M. Sc. Mathematics First Semester NUMERICAL ANALYSIS (MSM - 103)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins. Marks: 50

1. Answer (any four) questions out of the seven questions below: $10 \times 4 = 40$

(i) By means of Lagrange's formula prove that approximately 5+5=10

$$y_0 = \frac{1}{2}(y_1 + y_{-1}) - \frac{1}{8}\left[\frac{1}{2}(y_3 - y_1) - \frac{1}{2}(y_{-1} - y_{-3})\right]$$
Also prove that $y_1 = y_3 - .3(y_5 - y_{-3}) + .2(y_{-3} - y_{-5})$

(ii) Prove that Divided differences are symmetric function of their arguments.

Also write the nth order divided difference for the arguments

$$x_0, x_1, x_2, \dots x_n$$
. 8+2=10

- (iii) State fundamental theorem of difference calculus. A third degree polynomial passes through the points (0,-1), (1,1),(2,1) and (3,-2). Find the polynomial. 2+8= 10
- (iv) Deduce Newton Raphson method. Obtain the cube root of 12. 5+5= 10
- (v) Find the solution of the system: 83x+11y-4z = 95

$$7x+52y+13z = 104$$

 $3x+8y+29z = 71$

using Jacobi and Gauss iterative method.

5+5=10

- (vi) Given $\frac{dy}{dx} = y x$, y(0) = 2. Find using Runge Kutta fourth order formula y(0.1) and y(0.2) correct to four decimal.
- (vii) Calculate the value of the integral $\int_4^{5.2} logx \, dx$ by Trapezoidal rule, Simpson's one-third rule and Simpson's three-eighth rule.
- 2. If $\log 2=0.30103$, $\log 3=0.47712$, $\log 5=0.62897$, $\log 7=0.84510$. Find the value of $\log 4.7$ to four places of decimal.

Also given $\log_{10} 654 = 2.8156, \log_{10} 658 = 2.8182, \log_{10} 659 = 2.8189, \log_{10} 656 = 2.8156$ find the value of $\log_{10} 656$. 5+5=10

M.Sc. MATHEMATICS First Semester NUMERICAL ANALYSIS (MSM - 103)

		(INISINI -	103)	
Ď	uration: 20 minutes			Marks - 20
		(PART A - Obj	ective Type)	
I.	Choose the correct answer			1×20=20
1.	What is the degree of the in (i) 3 (ii) 4	iterpolated polynom (iii) 5 (iv) 2		,37), (4,62) and (5,93)?
2.	If $f(x)$ be a polynomial of n	th degree in x, then	the nth difference	of f(x) is constant and
	$(i) \ \Delta^{(n+1)} f(x) = 0$	(ii) $\Delta^n f(x) = 0$	(iii) f(x)=0	(iv) real
	The relation between differ			
	(i) $D = \frac{1}{h} \left[\Delta + \frac{\Delta^2}{2} + \dots \right]$ (iii) D=0	(ii) $D = \frac{1}{h} \left[\Delta - \frac{\Delta^2}{2} \right]$ (iv) $D = \Delta$	$+\frac{\Delta^3}{3}-\ldots$	
4.	Which one of the following (i) Graphic Method (iii) Cauchy Method	(ii) Algebraic meth	hod	
5.	The value of any divided di (i) Dependent (iii) Optional	(ii) Independent	of the order of the	arguments.
6.	The system of equations AXA and the augmented matrix (i) rank (iii) matrix			on if the coefficient matrix
7.	Problems in which all the co (i) Initial value problem (iii) Fermat's problem	(ii) Boundary value	e problem	int only are known as
8.	The problem defined by $\frac{dy}{dx}$ = (i) Initial value problem (iii) Jacobi's problem			

9. Picard's method of successive approximation is	
(i) $y^{(n-1)} = y_0 + \int_{x_0}^x f(x_n, y_n) dx$ (ii) $y^n = y_0 + \int_{x_0}^x f(x, y^{(n-1)}) dx$	
(iii) $y^{\frac{n}{2}} = y_n + \int_{x_0}^x f(x_n, y_n) dx$ (iv) $y = y_n + \int_{x_0}^x f(x_n, y_n) dx$	
10. The value of the integral $\int_4^{5.2} logx dx$ by Simpson's $\frac{1}{3}$ rd rule is	
(i) 1.82 (ii) 3.46 (iii) 7.23 (iv) 5.27	

11. The formula
$$I = h[ny_0 + \frac{n^2}{2}\Delta y_0 + \left(\frac{n^3}{3} - \frac{n^2}{2}\right)\frac{\Delta^2 y_0}{2!} + \cdots$$
 is a form of (i) Newton Raphson method (ii) Regular Falsi method

12. The formula
$$\int_{x_0}^{x_0+nh} y dx = \frac{h}{6} [2(y_0 + y_n) + 8(y_1 + y_3 + \dots + y_{n-1}) + 4(y_2 + y_4 + \dots + y_{n-2})]$$
 is a form of

(i) Trapezoidal rule (ii) Simpson's
$$\frac{3}{8}$$
th rule

(iii) Simpson's
$$\frac{1}{3}$$
rd rule (iv) Weddle's rule

13. The Newton's method for finding the root of an equation
$$f(x)=0$$
 converges if $f^1(x_n)$ is

(i) 1 (ii) 0 (iii) large (iv) small

14.	The value	of $F(5)$	using Lagran	nge's interp	olation	formula giv	ven by
_		(-)	8 8			0	

-	ne varae or r (3)	abilig Eagrange	5 interpolation re	Jilliala Siveli oj		
	. X	0	1	- 4	6	
	F(x)	1	-1	1	-1	

Is	(i) $\frac{-3}{2}$	(ii) -1	(iii) 1	(iv) $\frac{3}{2}$
----	--------------------	---------	---------	--------------------

15. Let
$$f(x)$$
 be continuous whose values are known at -2,-1,1 and 2. If the Lagrange's formula $f(x) = L_1 f(-2) + L_2 f(-1) + L_3 f(1) + L_4 f(2)$ is used to approximate $f(0)$, then L_3 is

(i) 0 (ii) $\frac{1}{3}$ (iii) $\frac{2}{3}$ (iv) $\frac{4}{3}$

16. The iterative formula to compute cube root of a number x using Newton Raphson method is

(i)
$$y_{n+1} = \frac{1}{3} (2y_n + \frac{x}{y_n^2})$$

(ii) $y_{n+1} = \frac{1}{3} (4y_n + \frac{x}{y_n^2})$

(iii)
$$y_{n+1} = \frac{1}{3} (2y_n + \frac{x}{y_n^3})$$

(iv)
$$y_{n+1} = \frac{1}{3} (3 + \frac{x}{y_n^2})$$

17. Newton's iterative formula to find \sqrt{N} is

(i)
$$x_{n+1} = x_n(2 - Nx_n)$$
 (ii) $x_{n+1} = x_n(2 + Nx_n)$

(iii)
$$x_{n+1} = (2x_n + \frac{N}{x_n})$$
 (iv) None of these

18. A square matrix A can be inverted if and only if it is

(i) Identity (ii) null

(iii) non-singular

(iv) singular

19. The value of E in calculus of finite difference is

(ii) $I - \Delta$

(iv) $I + \Delta$

20. The value of Δy in Runge Kutta fourth order formula for second interval is

$$(i)\Delta y = \frac{1}{6}(k_1 - 2k_2 - 2k_3 + k_4)$$

(i)
$$\Delta y = \frac{1}{6}(k_1 - 2k_2 - 2k_3 + k_4)$$
 (ii) $\Delta y = \frac{1}{6}(k_1 + k_2 + k_3 + 2k_4)$

(iii)
$$\Delta y = \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$
 (iv) $\Delta y = \frac{1}{6}(k_1 + k_2 - k_3 + k_4)$

(iv)
$$\Delta y = \frac{1}{6}(k_1 + k_2 - k_3 + k_4)$$