BCA Second Semester Digital Logic & Design (BCA- 06)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive) =50

PART-B (Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

I. Answer the following questions (any five)

2 x 5=10

- a) Divide (101101)₂ by (110)₂
- b) Prove that AB+A(B+C)+B(B+C)=B+AC
- c) What is the octal equivalent of hexadecimal number(B9F.AE)
- d) Simplify the given Boolean expression $Y=A+\bar{A}B+\bar{A}\bar{B}C+\bar{A}\bar{B}\bar{C}D$
- e) Draw the circuit diagram of full subtractor.
- f) Explain the difference between a sequential circuit and combinational circuit.
- g) Give the characteristic table and excitation table of JK flip flop.

Answer the following questions (any five)

5X3=15

a) Minimize the following function

$$AB + A\overline{B}C (\overline{B} \overline{C} + C) + \overline{AC}$$

b) Given the logic function of three variables

 $f(A,B,C)=A+\bar{B}C$. Express f in the standard SOP form.

- c) Design 1X4 demultiplexer.
- d) Minimize the following function using K-map. $F(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,5)$
- e) Design 4X16 decoder using 3X8 decoder.
- f) Construct T flip flop using SR flip flop.
- g) Design a 2X4 decoder with enable inputs.

III. Answer the following questions (any five)

5X5=25

- a) Convert (1011)₂ and (101)₂ into decimal numbers. Multiply them and then convert the result into binary.
- b) Realize following function using 8:1 multiplexer. $Y(A,B,C,D)=ABC+ABD+AB\bar{C}\bar{D}+\bar{A}B\bar{C}D$
- c) Implement a full adder with two half adders and an OR gate.
- d) Design a counter which counts decimal values 0, 1, 3,4,5,6
- e) Give the state diagram of SR flip flop.
- f) Implement the following function using 8:1 MUX. $F(A,B,C,D)=\sum (0,1,3,6,8,9,14,15)$
- g) Write short notes on any one of the following
 - a) Multiplexer
 - b) Shift Register
 - c) MOD-6 synchronous counter.

BACHELOR OF COMPUTER APPLICATION

Second Semester Digital Logic & Design (BCA- 06)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes	Marks - 20		
	(PART A- Objective)		
Time: 20 mins I. Choose the correct answer from the following:		Total Marks: 20	
		1×20=20	
1. Radix of binary number syste	em is?		
a) 0	b) 1		
c) 2	d) A &B		
2. A group of four bits is known	as		
a) Bit	b) Byte		
c) Nibble	d) Word		
3. 1's complement representation representation is	n of decimal number of -17	by using 8 bit	
a) 11101110	b) 11011101		
c) 11001100	d) 00010001		
4. The Gray code for decimal m	imber 6 is equivalent to		
a) 1100	b) 1001		
c) 0101	d) 0110		
5. The binary equivalent of octa	1 number (367.52) is		
a) 010101111.101010		0	
	b) 011110111.10101		
c) 111100111.101010	d) 111110111.10101	·	

-6. The hexadecimal number	er 'A0' has the decimal value equivalent to
a) 80	b) 256
c) 100	d) 160
5) 100	
7. The NAND gate output	will be low if the two inputs are
a) 00	b) 01
c) 10	d) 11
8 DeMorgan's first theore	em shows the equivalence of
a) OR gate and Exclus	
b) NOR gate and Bubb	
c) NOR gate and NAN	
d) NAND gate and NC	
9. If X, Y and Z are Boole	an variables, then the expression $X(X+\bar{X}Y)$ $Z(X+Y+Z)$ is
equal to	
a) $X+\overline{X}Y$	b) X+Y+Z
c) XYZ	d) XZ
10. The simplified form of	fa logic function Y=AB+ \bar{A} + \bar{B} is
	b) $\bar{A}+\bar{B}$
c) 1	d) 0
11. How many two –input	AND and OR gates are required to realize
Y=CD+EF+G	
a) 2, 2	b) 2, 3
c) 3, 3	d) None of these
12. Which of the following	r is a universal gate?
a) AND	b) NAND
c) OR	d) NOT
o) or	
13. A full adder logic circu	uit will have
a) Two inputs and one	

	b) Three inputs and three oc) Two inputs and two outpd) Three inputs and two ou	outs			
14.	The gates required to build a) Ex-OR gate and NOR ga c) Ex-OR gate and AND ga	ate	b) Ez	x-OR gate and OR gate our NAND gates	
15.	How many select lines will a) 4 c) 5	l a 16 to 1 mu	b) 3 d) 1	xer will have	
16.	One example of combination a) Adder c) Shift register	onal circuit is		ounter ip-flop	
17.	A demultiplexer hasa) One data input, a numbe b) One output and one input c) Several inputs and sever d) Several inputs and one o	it al outputs.	input	s and they have several output	ts
18.	How many flip- flops are real 5 c) 3	equired for M b) 6 d) 4	od-16	counter?	
19.	In a JK flip-flop, toggle me a) Set Q=1 and \bar{Q} =0 c) Change the output to the		e	b) Set Q=0 and \bar{Q} =1 d) No change in output.	
20.	A ring counter consisting o a) 5 states c) 32 states	f five flip-flop		b) 10 states d) infinite state.	