
 
50 

 

 

CHAPTER 5 

LONG WAVE LENGTH SOLITON SOLUTION OF KdV EQUATION. 

5.1 INTRODUCTION  

In this chapter we will find the long wavelength soliton solution of KdV 

Equation.   Recently H. Sakaguchi and B.A Malomed proposed a novel technique for 

finding the long wavelength solutions of the Gross Pitaevskii equation. We have 

extended their technique to KdV.  In this case, in the long wavelength limit we find 

Soliton solutions using the above technique. We find bound state solutions for KdV 

equation.  

One of the fascinating problems with large water bodies such as lake Ontario is 

that in the absence of wind one observes sinusoidal waves with a large time period of 

the order of days[58,50,95] (also known as long wavelength internal oscillations). 

However in the presence of wind one observes very large amplitude tanh type of 

waves. This phenomenon has not been explained so far. In this paper we attempt to set 

up a model to explain this phenomenon based on the KdV equation, in the long wave 

length limit and warm thermal currents in the lake .The warm thermal currents form a 

double well type of structure (see Figure. 1) which determines the nature of waves in 

the lake. 

 

Figure 1 
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Traditionally KdV equation has been used to describe wave motion in shallow 

water bodies. Sakaguchi and B. A. Malomed in their seminal paper [111] proposed a 

novel expansion technique (2) to obtain the long wavelength Soliton solutions for the 

Gross-Pitaevskii equation. By substituting the expansion (2) in the KdV equation we 

obtain (by comparing coefficients) the effective equations in the long wavelength 

region.  The effective equation is put in the form of a conservation law (4). The spatial 

component of the conservation law is the Schrodinger equation. In the limit where the 

nearest neighbor interactions are strong one obtains harmonic solutions. In the 

opposite limit one finds tanh soliton solutions.  

5.2  KdV EQUATION 

  The KdV equation is 

6 0t xxx x    
 

(1) 

In the long wavelength we look for solutions of the form [111] 

(0) (1)( , ) ( , ) ( , )cos(2 ) .......x t x t x t x      (2)  

where
(0) ( , )x t and 

(1) ( , )x t  are slowly varying functions of  x and t in comparison to  

cos(2x) and (1) ( , ) (0)

xx x t (x,t)  . This condition implies that ( , )(0)(x,t) x t  . Since 

( , )x t is a moving Soliton solution, this is only possible if 
(0)(x,t) is also in the frame 

moving with the Soliton. Hence 
(1) ( , )x t describes the variation of the moving Soliton 

frame with respect to the stationary observer frame. The role of 
(1) ( , )x t  is clarified 

below. 

Substituting (2) in the KdV equation, and collecting the coefficients of cos(2x) we get 

(1) (1) (1) (1) (0) (0) (1) (1) (1)12 6 6 12 sin 2 0xxxt x x x x               (3) 

Taking expansion around the point zero we get  

 
(1) (1) (1) (1) (0) (0) (1)12 6 6 0xxxt x x x            (4)

 

This equation may be written as a conservation law as 
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(1) (1) (1) (1) (0)12 6 0xxt

d

dx
         

  (5) 
 

In this asymptotic limit the spatial component of this conservation equation is the 

eigen value equation, 

(1) (1) 0xx V    (6) 

where
(0)6[2 ]V     (7) 

Note here that the effective potential in (6) is given in terms of
(0) ( , )x t , the solution 

of the KdV equation. Now the solution of the KdV equation [81] is given by 

21
sech ( )

2 2

(0) c
c x ct(x,t)

 
  

 
  (8) 

which may be written as   (12 )2(0 2) = k s(x,t ch) ke      (9) 

where
2

c
k  and         

(1) ( )x ct     (10) 

Assuming 
(1)  is the variable with respect to a frame of reference moving with a 

velocityc . 
(1) is in reality the frame of reference of the Soliton moving with a 

velocity c .  As mentioned earlier 
(1) ( , )x t  describes the motion of the Soliton frame 

with respect to the observer frame.  An important step in the solution of the KdV 

equation was provided by Gardner et al. [53], who proposed that it could be studied 

through the properties of the one-dimensional Schrödinger equation for potentialV . 

Following Gardner (6) may be written as 

 (1) (1)( , ) 0xx x t V    
 (11) 

and is the eigenvalue of the equivalent Schrodinger equation . Note here that the 

solution of the KdV equation  (or
(0) ) now acts as the potential in the equivalent 

Schrodinger equation. This is the signature of inverse scattering transform. For all 

nonlinear equations the solution of the nonlinear equation acts as a potential in the 

equivalent Schrodinger equation.  Now
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 
 

4
4 (1)

2
(1) 2 (1)( ) 1 .....

4

k
Sech k k


      (12)

  

where we assume 
(1) 1k      and higher order terms have been neglected. We 

rewrite (11) by substituting (12) in (11) to obtain 

 
4

(1)

(1) ' (1) 2 (1)

'

( , ) ( ) 0
4

13

xx

k
x t k


   

 

  
      
  

  

 

 (13)  

The effective potential is therefore 

 
4

(1)

(1) 2( )
4

eff

k
V k


    (14)  

Keeping (10) in mind we note that (14) represents a double well potential moving with 

a velocity c . This represents a double well with minima at 
1 2

3 3k c
    where we 

have used the results of Krumhansl and Schrieffer [80] and 
2

c
k   where c is the 

phase velocity. The depth of the potential well, as given by [80] is -1. Note that the 

depth of the potential well is constant. We note that since (14) corresponds to a double 

well one may write the effective Lagrangian for the above system as  

     
2

(1)
2 4 ''

(1) (1) (1)0

2 4 2

cd A B
L

dt


  

 
    
 

 

(15) 

where A  is negative and B is positive. Here the primes indicate derivative with respect 

to x. The fourth term arises as result of elastic energy due to squeezing of nearest 

neighbor elements and 0c is the elastic constant. The equation of motion in this 

effective potential may be computed using Euler Lagrange equation. One obtains 

   
2 (1)

3 ''
(1) (1) 2 (1)

02
0

d
A B c

dt


     

  (16) 

Using 
(1) ( )f x ct   one obtains                                            

2 2 '' 3

0( ) 0c c f Af Bf     (17)      
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To reduce the above to the dimensionless form [80] we use 

 2 2

0 2
c v

A



 ,

0

f



 ,

( )x vt
s




  (18) 

we obtain                                               
2

3

2
0

d

ds


     (19) 

In the limit 3 1  , (19) becomes                
2

2
0

d

ds


    (20) 

whose solution is                                       
0

( )
sin

x vt
 



 
  

 
 (21) 

In the opposing limit  
3 1   the solution is 

 
0

2

x vt
tanh 



 
  

   (22)      

 

Figure 2 

Here the x axis is a measure of the distance covered by the Soliton.The y axis is a 

measure of the amplitude of the Soliton. Note that Solitons can occur in the DNA 

lattice or in Oceans. KdV equation which describes wave motion in shallow water 

bodies admits tanh Soliton solutions in the long wavelength limit. 
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5.3 CONCLUSION 

 We have obtained both harmonic and tanh Soliton solutions of the KdV 

equation in the long wavelength limit. Both solutions have in fact been observed in 

large surface water lakes such as Lake Ontario [58, 50, 95]. 
 

  A double well structure is created in lakes by the warm currents. Cold water 

from the surface of the lake shores sinks to the bottom while warm water rises to the 

surface producing the hump of the double well near about the centre of the lake. In the 

absence of wind one observes sinusoidal waves. Such waves have a time period of the 

order of days [58, 50]. However winds of sufficient strength are able to raise the 

energy of the waves above the hump of the double well. As a result in the presence of 

wind one observes large amplitude Tanh Soliton type of waves [95].  

 


