
 
61 

 

CHAPTER 7 

DOMAIN WALL SOLITON SOLUTION IN NONLINEAR OPTICAL 

LATTICES 

7.1 INTRODCTION. 

In this chapter based on the Lagrangian for the Gross –Pitaevskii equation as 

derived by H. Sakaguchi and B.A Malomed  we have derived a double well model for 

the nonlinear optical lattice. This model explains the various features of nonlinear 

optical lattices. Further, from this model we obtain and simulate the probability for 

tunneling from one well to another which agrees with experimental results. 

Lagrangian (L) = Kinetic Energy (T)-Potential Energy (V)  

L T V   

 Based on the Lagrangian for the Gross –Pitaevskii equation as derived by H. 

Sakaguchi and B.A Malomed [111] we have derived a double well model for the 

nonlinear optical lattice. This model explains the various features of nonlinear optical 

lattices. Further, from this model we obtain and simulate the probability for tunneling 

from one well to another which agrees with experimental results [115].  

 Bose Einstein condensation has been both predicted and observed in harmonic 

oscillator potentials [78]. Nonlinear optical lattices have been known to simulate BEC 

via Feshbach Resonance [45]. It is therefore natural to assume a harmonic potential at 

each site of the nonlinear optical lattice. Further, Solitons have been predicted [19] and 

observed [87] in these lattices. We know from the seminal work of Krumhansl and 

Schrieffer [80] that a double well potential gives rise to domain wall Solitons. Since 

domain wall Solitons are indeed observed [102] in nonlinear optical lattices we 

suggest that a double well potential may model nonlinear optical lattices. Using the 

double well model for coupled nonlinear optical lattices we obtain Soliton solutions 

for one and higher dimensions. For the one dimensional lattice we find domain wall 

Solitons which induce lattice compression, which have been observed experimentally 

[115].   
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Figure 1 A lattice in the Euclidean Plane 

 

 

Figure 2 

A three-dimensional lattice filled with two molecules A and B, here shown as black 

and white spheres. Lattices such as this are used - for example - in the Flory–Huggins 

solution theory 

7.2 OPTICAL LATTICES 

An optical lattice is formed by the interference of counter-propagating laser beams, 

creating a spatially periodic polarization pattern. The resulting periodic potential may 

trap neutral atoms via the Stark shift. Atoms are cooled and congregate in the locations 

http://en.wikipedia.org/wiki/Interference_(wave_propagation)
http://en.wikipedia.org/wiki/Laser
http://en.wikipedia.org/wiki/Scalar_potential
http://en.wikipedia.org/wiki/Atom
http://en.wikipedia.org/wiki/Stark_shift
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of potential minima. The resulting arrangement of trapped atoms resembles a crystal 

lattice.   

 

Figure 3 

Simulation of an optical lattice potential. 

 

Recently in the seminal paper of H. Sakaguchi and B.A Malomed [111] the 

Lagrangian corresponding to the Gross –Pitaevskii equation was derived. The 

potential in the Lagrangian is the double well potential which has been treated in the 

classic paper of Krumhansl and Schrieffer [80]. As shown in [80] the double well 

potential admits Domain wall Solitons. Further we find light and dark Solitons in the 

coupled lattice (but not in the uncoupled lattice) which is again verified by recent 

experiments on coupled lattices [27, 35]. 

7.3 MODEL 

The Lagrangian corresponding to the Gross –Pitaevskii equation, derived in [111], is 

 
2

2 4

02 cos(2 )
d

L x g dx
dx


 





  
     

   
     (1) 

This represents a double well potential of the form 

2 4

( )
2 4

Ax Bx
V x    (2) 

http://en.wikipedia.org/wiki/Crystal
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where A = 4 and B =4( 0(2 )Cos x g ). We note that for potential minima to be real 

either A< 0 or B< 0 (but not both). This implies either < 0 or ( 0(2 )Cos x g ) <0. 

Both conditions have been found in “(1)” for the existence of Solitons. We note from 

[87] that the height of the double well is given by   
21

/
4

A B    =
2

cos(2 )x go




  where 

0 (2 )g Cos x  Note that we have two different regimes: (a) Height of the double well 

>> inter site interaction energy or (b) Height of double well << inter site interaction 

energy. The latter case (case (b)) correspond   the occurrence of the Solitons. We find 

domain wall Solitons for the one dimensional lattice and lattice compression. 

However, for the coupled nonlinear linear lattice we find both light and dark Solitons 

but no lattice compression [1, 121]. No domain wall solitons in the higher dimensions.  

 

7.4 ONE DIMENSIONAL LATTICE  

Using the parameters of the double well, A and B, identified in section II, we write the 

equation of motion [87a] for the lattice as 

3 2 ''

0 0m A B mc      
 (3) 

Following [80] we put ( )f x vt   and we obtain 

2 2 3

0( ) '' 0m v c f Af Bf     (4) 

Introduce the dimensionless variables 

2 2 2

0( ) /m c v A   (Length squared)       (5) 

0

f

u
  (6) 

 x vt
s




  (7) 

The dimensionless form of the equation is  

2
3

2
0

d

ds


     (8) 
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As shown in [80] this equation admits Soliton solutions of the form  

tanh( 2)s   (9) 

which is also the domain wall solution. Note that the tanh solutions are domain walls 

which have been observed in nonlinear optical lattices [79]. Domain wall Solitons 

induce lattice compression as observed in [104]. 

7.5 TWO DIMENSIONAL LATTICE 

To develop the equations for the coupled lattice we note first that a photo refractive 

lattice with two different types of atoms with an exponential interaction [90] can 

approximate the interaction between the atoms. One may then write the Lagrangian for 

the coupled lattice as  

 

 

2

2 41
1 0 1

2

2 42
2 0 2

2 21 2
1 2

2 cos(2 )

2 cos(2 )

( ) ( )
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d
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
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 (10) 

Expanding the exponential and using the Euler Lagrange equations we get 

   3 2 '' 2

1 1 1 1 1 1 1 1 1 2 1 2 0m A B mc VA B            (11) 

   3 2 '' 2

2 2 2 2 2 2 2 2 1 2 2 1 0m A B mc VA B             (12) 

1 1 2 22 , 2A A  
 (13)

 

1 01(2 )B Cos x g   (14) 

2 02(2 )B Cos x g   (15) 

We look for traveling wave solutions of the form 

1 1 1 ( )f z v t   ,  (16) 
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2 2 2( )f z v t     (17) 

Here 
1 2,v v are the velocities of the Soliton waves in the two lattices 

     2 2 '' 3 2

1 1 1 1 1 1 1 1 1 1 2 2 0m c f A f B f V A B f        (18) 

     2 2 '' 3 2

2 2 1 2 1 2 1 2 1 2 2 1 0m v c f A f B f VA B f f       (19) 

We convert the above coupled equations into the dimensionless form 

Let     
 2 2

1 1 1 2

1

1

m c v

A



 1

01

f

u
  (20) 

1
1

1

( )x v t
s




   (21)         

And 
 2 2

2 2 2 2

2

2

m c v

A



 2

02

f

u
   (22)                                     

2
2

2

( )x v t
s




  (23) 

Using these above equations we obtain (Assuming ( 1 2AB B B  or 

1 2 01 02B B implies g g   ) we obtain 

2
3 21

1 1 1 22
0

d

ds


           (24) 

2
3 22

2 2 1 22
0

d

ds


       (25) 

Adding the two equations one obtains 

       
2

3

1 2 1 2 1 2 1 2 1 22
4 0

d

ds
                 (26)  

  We put  
1 2 1 2

1
, ,

4

i iy ke e
k

          (27) 
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2
3

2
0

d y
y y y

ds
     (28) 

2
3

2
2

d y
y y

ds
   (29) 

The solution to the above equation can be obtained via elliptic equations using the 

method outlined in [80]    1 2 tanh     (30)  

Or  
 

 

 
2

2
tanh

4

i n
i n ke

ke
k

 
 


  

 
   (31) 

Taking the real part we obtain    
 

 
cos 2

cos 2 tanh
4

n
k n

k





        (32) 

 
 

 2

tanh
cos 2

4 1
n

k
 


  


  (33) 

Since   2 0n    we obtain 2 1
4 1

2
k or k                      (34) 

Hence  
1

cos( 2 ) tanh
2

n           (35) 

 1 1
cos tanh 2

2
n    

  
 

                         (36)  

n is called the winding number. 
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Figure. 4(a) Phase angle   vs the argument of the tanh function 
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Figure 4 (b).Phase angle   vs the argument of the tanh function 

In both Figure.4 (a) and Figure. 4 (b) we plot the phase angle   vs. the argument of 

the tanh function. The phases are opposite. These correspond to the light and dark 

Solitons which have been observed in nonlinear optical lattices [102, 27]. These 

equations actually describe matter wave oscillations (with opposite phases) in the 

system. In this picture two wells of the double well of the lattice vibrate in opposite 

phases as observed experimentally in [35].The experimental justification of the 

solutions given here also implies that exponential approximation of the interaction and 

the assumption g 01  = g 02 given earlier is correct. 

7.6 TUNNELING 

  Recently photon assisted tunneling has been observed in optical lattices [115]  

subject to a sinusoidal shaking of the lattice. To a first approximation we have 

harmonic oscillator states in each well. The probability of tunneling through a 

potential of height V and width a is given by (in the WKB approximation) 

 

 

2

2 2

1

2 )

1
4

P

m V E a
V Sinh

E V E


 
 
  
 





  (37) 

where E is energy of a state in the harmonic oscillator well and is given by [3] 
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11
2 22

*

0, 0*

1 2 1
1 exp

2 2
s

A A
u m

m B


            
       

      (38) 

Where 0u is the potential minimua and *m  is the effective mass. . For resonance to 

occur the energy of the tunneling particles must be at least equal to  

the height of the double well hump or (
21

/
4

A B  ). This means 

2 2 2

*2 4

k A

m B



     (39) 

Using
* 1m   , we obtain

1/2
2

2

A
k

B

 
  
 

  (40) 

Oscillation of the lattice means that the minima of the double well are undergoing an 

oscillation. This means  0 ( )u ACos kx wt   (41) 

Coherent tunneling implies that in the same phase tunneling can occur. This means 

tunneling can occur both at the start and end of the oscillation. One complete 

oscillation is defined by     2k x  or 
2

k
x





 (42) 

Taking 0x u  we obtain
0

2
k

u


 .  (43) 

Taking into account the fluctuation in 0u  

we write the sinh
2 

term as 1 11
2 * 2 *2 22

2

0*

0

1 2 1
in 2 1 exp

2 2 2

A A m A m
S h m V u

m B B u

                                           

 (44) 

Using the expansion 

( / 2)( 1/ ) ( )x t t n

n

n

e J x t






   (45) 

We obtain 

1 11
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







                                 
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Using this expression we simulated the probability of transmission. The results are 

shown in Figure 5 
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Figure 5 Transmission probability vs energy 

 The simulated profile agrees favorably with the experimental results of [121,104]. We 

conclude that the double well model provides a reasonable basis for the study of the 

various properties of the nonlinear optical lattice. 


