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CHAPTER 9 

VORTEX SOLITONSIN POLY-ACETYLENE 

9. 1 POLYACETYLENE 

 Polyacetylene (IUPAC name: polyethyne) usually refers to an organic 

polymer with the repeating unit (C2H2)n. The name refers to its conceptual 

construction from polymerization of acetylene to give a chain with 

repeating olefingroups. This compound is conceptually important as the discovery of 

polyacetylene and its high conductivity upon doping helped to launch the field of 

organic conductive polymers. The high electrical conductivity discovered by Hideki 

Shirakawa, Alan Heeger, and Alan MacDiarmid for this polymer led to intense interest 

in the use of organic compounds inmicroelectronics (organic semiconductors). This 

discovery was recognized by the Nobel Prize in Chemistry in 2000. Early work in the 

field of polyacetylene research was aimed at using doped polymers as easily 

processable and lightweight "plastic metals." Despite the promise of this polymer in 

the field of conductive polymers, many of its properties such as instability to air and 

difficulty with processing have led to avoidance in commercial applications. 

Compounds called polyacetylenes also occur in nature, although in this context the 

term refers to polyynes, compounds containing multiple acetylene groups ("poly" 

meaning many), rather than to chains of olefin groups ("poly" meaning polymerization 

of). 

9.2 STRUCTURE OF POLYACETYLENE 

 

 
 

 
Figure 1 Structural diagram 
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Figure 2 Ball-and-stick model 

 

Polyacetylene consists of a long chain of carbon atoms with alternating single 

and double bonds between them, each with one hydrogen atom. The double bonds 

can have either cis or trans geometry. The controlled synthesis of each isomer of the 

polymer, cis-polyacetylene or trans-polyacetylene, can be achieved by changing the 

temperature at which the reaction is conducted. The cis form of the polymer is 

thermodynamically less stable than the trans isomer. Despite the conjugated nature of 

the polyacetylene backbone, not all of the carbon–carbon bonds in the material are 

equal: a distinct single/double alternation exists.  Each hydrogen atom can be 

replaced by a functional group. Substituted polyacetylenes tend to be more rigid than 

saturated polymers.  Furthermore, placing different functional groups as substituents 

on the polymer backbone leads to bending of the polymer chain out of conjugation. 

 

9.3 INTRODUCTION. 

  We derive the vortex soliton solutions for the 2D nonlinear optical lattice 

described by a double Sine-Gordon equation. The presence of the vortex induces 

energy gaps in the system. Due to the presence of vortices a large block of states  are 

absent in the wave-vector space forcing the original number of spins and charges to 

redistributed in the depleted number of states. This redistribution forces spin-charge 

separation in the system. Thus the vortices may be with or without spin or charge 

  Solitons in conducting polymers have been attracting considerable attention in 

recent years [119]. In these conducting polymers, Poly-acetylene is a particularly 
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important example. Each carbon atom in a pure trans-polyacetylene contributes only a 

single p electron, and  band is only half full.  

   It was recognized that in addition to electron and hole excitations in such a 

dimerized chain a new type of excitation could exist: namely, a domain wall 

separating regions of different bonding structure. In view of the fact that the domain 

wall is a nonlinear shape preserving excitation which propagates freely, it has been 

called a soliton. To determine the shape of the soliton calculations were carried out by 

Su, Schrieffer and Heeger. The dynamics of the Solitons is given by the nonlinear 

Schrodinger equation. We note that the nonlinear Schrodinger equation also describes 

the dynamics in the nonlinear optical lattice. Hence we consider the dynamics of the 

nonlinear optical lattices in BEC. However we note that our results of spin charge 

separation are valid for both Bose Einstein condensates and Poly acetylene. 

  Bose Einstein Condensation (BEC) has been both predicted and observed in 

harmonic oscillator potentials [78]. Nonlinear optical lattices have been known to 

simulate BEC [46]. It is therefore natural to assume a harmonic potential at each site 

of the nonlinear optical lattice. Further, Solitons have been predicted [20] and 

observed [87] in these lattices. We know from the seminal work of Krumhansl and 

Schrieffer [80] that a double well potential gives rise to domain wall Solitons. Since 

domain wall Solitons are indeed observed [101] in nonlinear optical lattices we 

suggest that a double well potential may model nonlinear optical lattices. Using the 

double well model for coupled nonlinear optical lattices we obtain Soliton solutions 

for one and higher dimensions. For the one dimensional lattice we find domain wall 

Solitons which induce lattice compression, which have been observed experimentally 

[116]. 

  Recently in the seminal paper of H. Sakaguchi and B.A Malomed [111] the 

Lagrangian corresponding to the Gross–Pitaevskii equation was derived. The potential 

in the Lagrangian is the double well potential which has been treated in the classic 

paper of Krumhansl and Schrieffer [80]. As shown in [80] the double well potential 
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admits Domain wall Solitons. Further we find light and dark Solitons in the coupled 

lattice (but not in the uncoupled lattice) which is again verified by recent experiments 

on coupled lattices [28, 36]. 

9.4 MODEL. 

Following Sakaguchi and Malomed [111] we use the equation 

2

t xx yy 0

1
iu = (u +u )+(g - cos(2x) - cos(2y)) u u

2      (1) 

The discretized form of the above equation is 

2n,m

n,m 0 n,m n,m

du
i = u - (g - cos(2x) - cos(2y)) u u

dt


 

  (2) 

where m, n are  the lattice indices for the 2D optical lattices and the Laplacian 

,n mu is given by  , 1, 1, , 1 , 1 ,4n m n m n m n m n m n mu u u u u u          (3) 

This is the discretized form of the GPE. Note that this DNLS has been treated 

extensively by [79]. For the origin of the factor 
0( cos(2 ))g x refer to [79]. As in [79] 

we define the norm  

2

,

,

n m

n m

N u    (4) 

Further Lagrangian corresponding to (1) in the discrete form is 

,

2 4

, 1 , 1, , 0 ,

,

[ ( cos(2 )) ]
n mn m n m n m n m n m

n m

L u u u u u g x u          (5) 

To solve (2) we use 

(0)

, ,

i t

n m n mu u e    (6) 

Where  
,

(0) exp( )
n m

u A a n b m    (7) 

We wish to find under what condition of a and b we will find stable solution of (2) 

Substituting (6),(7)in (2) we get  

 
1 1 1

2 12

1
4

a n b m a n b m a n b m

n b ma n b m a n b m

a n b m a n b m

e e e
Ae A A e e

e e

        

     

    

  
   

   

 (8) 

Dividing by 
1a n b m

Ae
  

 one may obtain 
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04 ( cos(2 ))a a b be e e e g x             (9) 

However 
,

2
22 2(0) 2

,

, , ,

2
Tanh Tanhn m

a n m

n m

n m n m n m

A
N u u A e b

a b


        (10) 

2 Tanh TanhA N a b  (11) 

We have  

, 1 , 1, ,

,

[ ]n m n m n m n m

n m

u u u u  =  
2 1 2 12

,

a n b m a n b m a n b m a n b m

n m

A e e e e
          

   

2

,

a n b m a n b m b a

n m

A e e e e
            

2 22

,

a n b mb a

n m

e e A e
           (12) 

2 Tanh TanhA N a b  (13) 

Substituting (13) in (5) we obtain 

2 2

,

1

Tanh Tanh

a n b m

n m

e
a b

   
   (14) 

Hence  

, 1 , 1, ,

,

, b a

n m n m n m n m

n m

u u u u N e e 

 
         (15) 

Without loss generality considering all the neighboring points we may write 

, 1 , 1, ,

,

, b b a a

n m n m n m n m

n m

u u u u N e e e e 

 
          2 (sech sech )N b a   (16) 

2

,

,

n m

n m

u N  (17) 

     
2

4 4

0 , 0 , 0 3 3
, ,

Cosh(2 )Cosh(2 )Sinh Sinh
cos(2 ) cos(2 ) cos(2 )

16 Cosh ( )Cosh ( )
n m n m

n m n m

N a b a b
g x u g x u g x

a b
       (18) 

After the summation the Lagrangian becomes 

 
2

0 3 3

Cosh(2 )Cosh(2 )Sinh Sinh
(sech sech ) cos(2 )

16 Cosh ( )Cosh ( )
eff

N a b a b
L N b a N g x

a b
      (19) 

For a stationary profile we must have 0
eff eff effL L L

N a b

  
  

  
 (20) 

 0 3 3

Cosh(2 )Cosh(2 )Sinh Sinh
(sech sech ) 1 cos(2 ) 0

8 Cosh ( )Cosh ( )

effL N a b a b
b a g x

N a b


     


 (21)  
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 0

3 3

cos(2 ) Cosh(2 )Cosh(2 )Sinh Sinh
1 (sech sech )

8 Cosh ( )Cosh ( )

g x N a b a b
X b a where X

a b


     (22) 

 
 

0

8
1 (sech sech )

cos(2 )
N b a

X g x
  


  (23) 

As   01 (sech sech ) 0 0 cos 2 maxb a N g x N attains imum      

9.5 VORTEX SOLUTIONS 

For the 2D lattice 

 
, ,

2 (0) 2 (0)

02 2
cos(2 ) cos(2 ) 0

n m n mu u
g x y

x y

 
      

   (24) 

The Laplacian in polar coordinates is given by 

2 2

2 2 2

1 1

r r r r 

  
   

    (25) 

We rewrite (24) in polar coordinates where we have absorbed 0 ,g 
in 1 2,A A

 

2 2

1 1 2 22 2
cos( ) cos( ) 0

f f f
A A

r r r
 



  
      

    (26) 

Equation (25) is the double Sine-Gordon equation which admits vortex solutions 

[119]. We look for solutions of the form 

( , ) ( )imf r e w r   (27) 

where  m is the vortex degree 

We thus obtain for the radial equation 

2 2

2 2

1
0

w w m

r r r r

 
  

   (28) 

For large r there is very little change in w  and we can neglect the double derivative 

term. We then have 

2

2

1
0

w m

r r r


 

  (29) 

This may be written as 

r

m

r

w






 (30) 
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which has the solution mln(r)w   (31) 
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Figure 3 

 

The vortex solution is given by 

mln(r)erf im ),(  (32) 

 

0 1 2 3 4 5 6 7 8 9 10
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Theta

f(
r,

T
he

ta
)

m = 1

 

Figure 4 

 



 
87 

 

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2

3

4

5

Theta

f(
r,

T
h
e
ta

)

m =2

 

Figure 5 

 

9.6 ENERGY GAPS IN THE PRESENCE OF VORTICES. 

  The characteristic feature of Vortex solutions is that the system undergoes very 

large changes in energy due to very small changes in external parameters. This feature 

induces energy gaps in the system. To understand this feature it is best to use the SSH 

Hamiltonian. 

SSH ph phH H H H         (33) 

In this Hamiltonian H describes the electron electron interactions, 
phH  describes the 

lattice and 
phH  describes the interactions between these two. An effective 

Hamiltonian used is the tight binding Su-Schrieffer-Heeger (SSH) Hamiltonian.  This 

Hamiltonian 

   1, , , 1,
, , , ,

† † † †

0 , , 1, , , , , 1,

, ,

n m s n m s
n m s n m sn m s n m s n m s n m s

n m s

H t c c c c c c c c          (34) 

where is the electron-phonon interaction constant and
0t the hopping constant for an 

undimerized 

structure. 1, ,

†
n m sc  and , ,

†
n m sc are the electron creation and annihilator operators on position 

n, m with spin s, respectively. 

 



 
88 

 

  

  

1, ,
, ,

, 1,
, ,

† †

1, , , , 1, ,

, ,

† †

, 1 , , , , 1,

n m s
n m s

n m s
n m s

ph n m n m n m s n m s

n m s

n m n m n m s n m s

H u u c c c c

u u c c c c

  



  

 

  

  


   (35) 

nu is the deviation from the undimerized structure on site n,m 

  
2

2

, 1 ,

1

2 2

n
ph n m n m

n

p
H u u

m
      (36) 

To diagonalize the above Hamiltonian we use the Fourier transform of the creation 

(annihilation) operators: 

( )

,

1 ik n m a

ks nms

n s

c e c
N

      (37) 

k is the wave vector and ranging from 0 to / 2a  

Where N is the number of monomer units in the chain. 

( )

,

1 ik n m a

ks nms

n s

c e c
N

 

      (38) 

( )

,

( 1)n ik n m a

ks nms

n s

i
c e c

N

 




     (39) 

The Hamiltonian can now be written as 

 

 

† †

† † 2

( )

2

k ks ks ks ks

k

k ks ks ks ks

H u c c c c

c c c c Nku

    

   

  

  


  (40) 

Where 

4 sin( )k u ka   

02 cos( )k t ka      (41) 

And Brillouin zone is defined by 

2 2
k

a a

 
      (42) 

Finally the Hamiltonian can be diagonalized using the Bogoliubov transformation 

ks k ks k ksa c c        (43) 

ks k ks k ksa c c         (44) 
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The diagonal Hamiltonian is 

  2

) 2k ks ksH E n n Nku        (45) 

 
1/2

2 2

k k kE      (46) 

Here 
k is the band gap. Note that band gap is proportional to the coupling parameter 

  which plays the same role as   discussed earlier. 

9.7 CHARGE AND SPIN STATES OF VORTICES 

  As pointed out in section 3 changes in the case of vortices changes of external 

parameters induce changes in the effective potential. This alters the number of states 

available in the system. The total number charges in the system is Q and the number of 

states is N.  The following cases arise: 

1.   N =Q 

 In this case each state is assigned one charge 

2. N<Q 

In this case each state is assigned one charge and extra charges remain. 

3. N>Q 

Each state cannot be assigned a charge or spin. Hence vortices with or without spin 

and with or without charge are possible. 

9.8 CONCLUSION 

  We have found vortex solutions in the case of 2D nonlinear optical lattices. In 

the presence of these vortices there is a large change in the internal parameters of the 

system caused by only a slight change of the external parameters. This behavior allows 

us to describe the system in terms of the SSH Hamiltonian which predicts that there 

will be an energy gap in the system and causes large blocks of states to be absent from 

the wave vector space. These results in vortices with or without spin or charge are 

possible. 


