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8.1 Introduction: 

The study of Magnetohydrodynamic free convection finds applications in fluid 

engineering problems such as MHD pumps, accelerators and flow meters, plasma 

studies, nuclear reactors, geothermal energy extraction, etc. Free convective flow past 

a vertical plate in the presence of a transverse magnetic field has been studied by 

several researchers. Kim (2000) studied the magnetohydrodynamic convective heat 

transfer past a semi-infinite vertical porous moving plate with variable suction. The 

combined effects of thermal and mass diffusion on the unsteady free convection flow 

of a viscous incompressible fluid over an infinite vertical porous plate was 

investigated by Takhar et al. (2003). Ahmed et al. (2011) considered the effects of 

thermal diffusion on a three-dimensional MHD free convection flow of a viscous 

incompressible fluid over a vertical plate embedded in a porous medium. Choudhury 

and Hazarika (2013) examined the effects of variable viscosity and thermal 

conductivity on free convective oscillatory flow of a viscous incompressible and 

electrically conducting fluid past a vertical plate in slip flow regime with periodic 

plate temperature when suction velocity oscillates in time about a constant mean. 

The combined effects of convective heat and mass transfer on the flow of a 

viscous, incompressible and electrically conducting fluid has many engineering and 

geophysical applications such as in geothermal reservoirs, drying of porous solids, 

thermal insulation, enhanced oil recovery, cooling of nuclear reactor and underground 

energy transports. The hydromagnetic free convection flow with mass transfer effect 

has been studied extensively by many researchers. Chamkha and Khaled (2000) 

investigated the hydromagnetic combined heat and mass transfer by natural 

convection from a permeable surface embedded in a fluid saturated porous medium. 

Chen (2004) studied the combined heat and mass transfer in MHD free convection 

from a vertical surface with Ohmic heating and viscous dissipation. Lai and Kulachi 

(1990) used the series expansion method to investigate coupled heat and mass transfer 

in natural convection from a sphere in a porous medium. The heat and mass transfer 

effects on a flow along a vertical plate in the presence of magnetic field was  
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investigated by Elbashbeshy (1997). The influence of combined natural convection 

from a vertical wavy surface due to thermal and mass discussion was studied by 

Hossain and Rees (1999).  

Heat absorption/generation effects have significant impact on the heat and 

mass transfer flow of a viscous, incompressible and electrically conducting fluid. 

Chamkha and Khaled (2001) investigated heat generation/absorption effects on 

hydromagnetic combined heat and mass transfer flow from an inclined plate. The 

effects of a heat source/sink on unsteady MHD convection through porous medium 

with combined heat and mass transfer was studied by Kamel (2001). Chamkha (2004) 

solved the problem of unsteady MHD convective heat and mass transfer past a semi-

infinite vertical permeable moving plate with heat absorption. Makinde (2009) 

discussed the hydromagnetic boundary layer flow and mass transfer past a vertical 

plate in a porous medium with constant heat flux. 

There has been a renewed interest in studying magnetohydrodynamic flow 

with heat and mass transfer in porous and nonporous media in the presence of 

magnetic field due to its importance in the design of MHD generators and accelerators 

in geo-physics, in systems like underground water and energy storage, The effect of 

transversely applied magnetic field on convection flows of an electrically conducting 

fluid has been discussed by several authors notably Nigam and Singh (1960), 

Soundalgekar and Bhat (1971), Vajravelu (1988), Attia and Kotb (1996) etc. The 

effect of chemical reaction on above discussed flow is very useful for improving a 

number of chemical technologies such as food processing, polymer production, 

manufacturing of ceramics etc. Chamber and Young (1958) analyzed the effects of 

homogeneous first order chemical reactions in the neighbourhood of a plate for 

destructive and generative reactions. Muthucumaraswamy et al. (2008) studied the 

mass transfer effect on isothermal vertical oscillating plate in presence of chemical 

reaction. Ahmed (2014) numerically analyzed the magneto hydrodynamic chemically 

reacting and radiating fluid past a non-isothermal impulsively started vertical surface 

adjacent to a porous regime.  
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On the other hand radiative flows are encountered in countless industrial and 

environmental processes e.g. heating and cooling chambers, fossil fuel combustion 

and energy processes evaporation from large open water reservoirs and solar power 

technology. Soundalgekar and Takhar (1993) considered the radiative free convective 

flow of an optically thin gray-gas past a semi-infinite vertical plate. Raptis and 

perdikis (1999) studied the effects of thermal radiation and free convection flow past a 

moving vertical plate. Kartikeyan et al. (2013) investigated the thermal radiation 

effects on MHD convective flow over a plate in a porous medium by perturbation 

technique. Ahmed et al. (2014) approached Non-linear Magneto hydrodynamic 

radiating flow over an impulsively started vertical plate in a saturated porous regime 

with Laplace and Numerical technique. 

The aim of this chapter is to investigate effects of chemical reaction and mass 

transfer in a slip flow for MHD convective flow of an unsteady viscous 

incompressible electrically conducting fluid over a semi-infinite vertical plate 

embedded in a porous medium with heat generation effect. The validity of the flow 

model has been discussed fruitfully.  The non-linear partial differential equations have 

been solved analytically using classical perturbation technique. 

8.2 Mathematical formulation: 

The laminar convective heat and mass transfer flow of an incompressible, 

viscous, heat absorbing, electrically conducting fluid over a semi-infinite vertical plate 

with radiation embedded in a porous medium is considered. A uniform magnetic field 

of strength B0 is applied transversely in the direction of 𝑦ത axis. The 𝑥̅ axis is taken 

along the plate and 𝑦ത is perpendicular to it. The induced magnetic field is neglected. 

The radiative heat flux in the 𝑥̅ direction is considered negligible in comparison to that 

in the 𝑦ത direction. Then by usual Boussinesq’s approximation the unsteady flow is 

governed by the following equations 
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𝜕𝑢ത

𝜕𝑡̅
+ 𝑣̅

𝜕𝑢ത

𝜕𝑦ത
=

⎩
⎪
⎨

⎪
⎧−

1

𝜌

𝜕𝑝̅

𝜕𝑥̅
+ 𝜈

𝜕ଶ𝑢ത

𝜕𝑦തଶ
+ 𝑔𝛽(𝑇ത − 𝑇ത∞)

+𝑔𝛽̅(𝐶̅ − 𝐶∞̅) − ቆ
𝜎𝐵଴

ଶ

𝜌
+

𝜐

𝐾ഥ
ቇ 𝑢ത

⎭
⎪
⎬

⎪
⎫

 ,                                            (8.2.1) 

𝜕𝑇ത

𝜕𝑡̅
+ 𝑣̅

𝜕𝑇ത

𝜕𝑦ത
=

𝜅

𝜌𝐶௣

𝜕ଶ𝑇ത

𝜕𝑦തଶ
−

1

𝜌𝐶௣
൬

𝜕𝑞ത௥

𝜕𝑦ത
൰ −

𝑄଴

𝜌𝐶௣

(𝑇ത − 𝑇ത∞) ,                                    (8.2.2) 

𝜕𝐶̅

𝜕𝑡̅
+ 𝑣̅

𝜕𝐶̅

𝜕𝑦ത
= 𝐷

𝜕ଶ𝐶̅

𝜕𝑦തଶ
− 𝐶௥(𝐶̅ − 𝐶∞̅) ,                                                                    (8.2.3) 

According to Cogley et al. (1968), in the optical thin limit for a non-gray gas near 

equilibrium, the radiative heat flux is represented by the following form 

𝜕𝑞ത௥

𝜕𝑦
= 4(𝑇ത − 𝑇ത∞)𝐼 ,                                                                                                (8.2.4) 

where    𝐼 = න 𝐾ఒ௪

𝜕𝑒௕ఒ

𝜕𝑇
𝑑𝜆 

 

Under the above assumption, the boundary conditions are 

⎩
⎪
⎨

⎪
⎧

𝑢ത = 𝑢ത௦௟௜௣ =
ඥ𝐾

𝛼

𝜕𝑢ത

𝜕𝑦ത
 ,   𝑇ത = 𝑇ത௪  ,   𝐶̅ = 𝐶௪̅ ,    𝑎𝑡 𝑦ത =  0

𝑢ത → 𝑈ഥ∞ = 𝑈଴൫1 + 𝜀𝑒௡ത௧̅൯,   𝑇ത → 𝑇ത∞,   𝐶̅ → 𝐶∞̅ 𝑎𝑠  𝑦ത  → ∞⎭
⎪
⎬

⎪
⎫

                        (8.2.5) 

Since the suction velocity normal to the plate is a function of time only, it can be taken 

in the experimental form as 

𝑣̅ = −𝑉଴൫1 + 𝜀𝑒௡ത௧̅൯,                                                                                                (8.2.6) 

where A is a real positive constant, 𝜀  and 𝜀 A are small less than unity and 𝑣଴  is a 

scale of suction velocity which has non-zero positive constant. 

Outside the boundary layer, the equation (8.2.1) becomes 
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−
1

𝜌

𝜕𝑝̅

𝜕𝑥̅
=

𝑑𝑈ഥ∞

𝑑𝑡̅
+

𝜎𝐵଴
ଶ

𝜌
𝑈ഥ∞ +

𝜈

𝐾ഥ
𝑈ഥ∞                                                                            (8.2.7) 

Eliminating  (𝜕𝑝̅/𝜕𝑥̅) from equation (8.2.1) and equation (8.2.7), we obtain 

𝜕𝑢ത

𝜕𝑡̅
+ 𝑣̅

𝜕𝑢ത

𝜕𝑦ത
=

⎩
⎪
⎨

⎪
⎧ 𝑑𝑈ഥ∞

𝑑𝑡̅
+ 𝜈

𝜕ଶ𝑢ത

𝜕𝑦തଶ
+ 𝑔𝛽(𝑇ത − 𝑇ത∞)

+𝑔𝛽(𝐶̅ − 𝐶∞̅) + ቆ
𝜈

𝐾ഥ
+

𝜎𝐵଴
ଶ

𝜌
ቇ (𝑈ഥ∞ − 𝑢ത)

⎭
⎪
⎬

⎪
⎫

                             (8.2.8) 

Introducing the non-dimensional variables 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑢ത = 𝑢𝑈଴,   𝑣̅ = 𝑣𝑉଴,   𝑈ഥ∞ = 𝑈∞𝑈଴,   𝑢ത௣ =  𝑈௣𝑈଴ ,   𝑦 =

𝑉଴𝑦ത

𝜈
,

  

𝐾ഥ =
𝜈ଶ𝐾

𝑉଴
ଶ ,   𝑇ത = 𝑇ത∞ + 𝜃(𝑇ത௪ − 𝑇ത∞),   𝐶̅ = 𝐶∞̅ + 𝜙(𝐶௪̅ − 𝐶∞̅),

 

𝐺𝑟 =
𝜈𝑔𝛽(𝑇ത௪ − 𝑇ത∞)

𝑈଴𝑉଴
ଶ  ,   𝐺𝑚 =

𝜈𝑔𝛽̅(𝐶௪̅ − 𝐶∞̅)

𝑈଴𝑉଴
ଶ ,   𝑀 =

𝜎𝐵଴
ଶ𝜈

𝜌𝑉଴
ଶ  ,

 

 𝑡 =
𝑡̅𝑉଴

ଶ

𝜈
,   𝑛 =

𝑛ത 𝑉଴
ଶ

𝜈
,   𝑃𝑟 =

𝜈𝜌𝐶௣

𝜅
=

𝜈

𝛼
 ,

  

𝐹 =
4𝜈 𝐼

𝜌𝐶௣𝑉଴
ଶ  ,   𝑆𝑐 =

𝜈

𝐷
 ,   𝑄 =

𝑄଴𝜈

𝜌𝐶௣𝑉଴
ଶ  ,   𝐶௥ =

𝜈𝐶௥

𝑉଴
ଶ ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

           (8.2.9) 

On using (8.2.9), the equations (8.2.8), (8.2.2) and (8.2.3) become 

𝜕𝑢

𝜕𝑡
− (1 + 𝜀𝐴𝑒௡௧)

𝜕𝑢

𝜕𝑦
=

𝑑𝑈∞

𝑑𝑡
+

𝜕ଶ𝑢

𝜕𝑦ଶ
+ 𝐺𝑟𝜃 + 𝐺𝑚𝜙 + 𝑁(𝑈∞ − 𝑢) ,           (8.2.10) 

𝜕𝜃

𝜕𝑡
− (1 + 𝜀𝐴𝑒௡௧)

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕ଶ𝜃

𝜕𝑦ଶ
− 𝐹𝜃 − 𝑄𝜃 ,                                                   (8.2.11) 

𝜕𝜙

𝜕𝑡
− (1 + 𝜀𝐴𝑒௡௧)

𝜕𝜙

𝜕𝑦
=

1

𝑆𝑐

𝜕ଶ𝜙

𝜕𝑦ଶ
− 𝐶௥𝜙 ,                                                           (8.2.12) 

where 𝑁 = 𝑀 + 𝐾ିଵ,  Gr is the thermal Grashoff number, Gm is the solutal Grashoff 

number, Pr is the Prandtl number, M is the magnetic field parameter, Sc is the Schmidt 
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number, Q is the dimensionless heat generation /absorption parameter, Cr is the 

chemical reaction parameter and F is the radiation parameter. 

 

The boundary conditions (8.2.5) reduce to following non-dimensional form 

⎩
⎨

⎧ 𝑢 = 𝑢௦௟௜௣ = 𝜙ଵ

𝜕𝑢

𝜕𝑦
 ,   𝜃 = 1,   𝜙 =  1    𝑎𝑡 𝑦 = 0

𝑢 → 𝑈∞ = 1 + 𝜀𝑒௡௧,   𝜃 → 0,   𝜙 → 0   𝑎𝑠 𝑦 → ∞ ⎭
⎬

⎫

 ,                                 (8.2.13) 

where  𝜙ଵ =
√𝐾

𝛼
 . 

8.3 Method of Solution: 

The equations (8.2.10)-(8.2.12) represent a set of partial differential equations 

and thus in order to reduce these into a set of ordinary differential equations in 

dimensionless form, we assume the following for velocity, temperature and 

concentration as, 

⎩
⎪
⎨

⎪
⎧

𝑢 = 𝑢଴(𝑦) + 𝜀𝑒௡௧𝑢ଵ(𝑦) + 0(𝜀ଶ)

𝜃 = 𝜃଴(𝑦) + 𝜀𝑒௡௧𝜃ଵ(𝑦) + 0(𝜀ଶ)

𝜙 = 𝜙଴(y) + εe୬୲𝜙ଵ(y) + 0(εଶ)⎭
⎪
⎬

⎪
⎫

 ,                                                                 (8.3.1) 

Where 𝑢଴ , 𝜃଴ and 𝜙଴ are mean velocity, mean temperature and mean concentration 

respectively. 

Substituting the equation (8.3.1) into equations (8.2.10)-(8.2.12), equating the 

harmonic and non-harmonic terms and neglecting the higher-order terms of 0(𝜀ଶ), we 

obtain the following pairs of equations for (𝑢଴ , 𝜃଴  𝜙଴) and (𝑢ଵ, 𝜃ଵ, 𝜙ଵ). 

𝑢଴
′′ + 𝑢଴

′ − 𝑁𝑢଴ = −𝑁 − 𝐺𝑟𝜃଴ − 𝐺𝑚𝜙଴ ,                                                             (8.3.2) 

𝑢ଵ
′′ + 𝑢ଵ

′ − (𝑁 + 𝑛)𝑢ଵ = −(𝑁 + 𝑛) − 𝐴𝑢଴
′ − 𝐺𝑟𝜃ଵ − 𝐺𝑚𝜙ଵ,                          (8.3.3) 
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𝜃଴
′′ + 𝑃𝑟𝜃଴

′ − (𝐹 + 𝑄)𝑃𝑟𝜃଴ = 0 ,                                                                            (8.3.4) 

𝜃ଵ
′′ + 𝑃𝑟𝜃ଵ

′ − 𝑃𝑟(𝐹 + 𝑄 + 𝑛)𝜃ଵ = −𝐴𝑃𝑟𝜃଴
′  ,                                                       (8.3.5) 

𝜙଴
′′ + 𝑆𝑐 𝜙଴

′ − 𝐶௥𝑆𝑐 𝜙଴ = 0 ,                                                                                    (8.3.6) 

𝜙ଵ
′′ + 𝑆𝑐 𝜙ଵ

′ − 𝑆𝑐(𝐶௥ + 𝑛) 𝜙ଵ = −𝐴𝑆𝑐 𝜙଴
′  ,                                                         (8.3.7) 

The corresponding boundary conditions are 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

 

ቌ
𝑢଴ = 𝜙ଵ𝑢଴

′  ,    𝑢ଵ = 𝜙ଵ𝑢ଵ
′  ,    𝜃଴ = 1 ,

𝜃ଵ = 0  ,   𝜙଴ = 1 ,   𝜙ଵ = 0

ቍ    𝑎𝑡   𝑦 = 0

൭ 
𝑢଴ → 1 ,    𝑢ଵ → 0,   𝜃଴ → 0 ,

 
𝜃ଵ → 0 ,   𝜙଴ → 0 ,   𝜙ଵ → 0

 ൱     𝑎𝑠   𝑦 → ∞

 

⎭
⎪
⎪
⎬

⎪
⎪
⎫

                              (8.3.8) 

On using the boundary conditions (8.3.8), the solutions of equations (8.3.2) to (8.3.7) 

are obtained as follows: 

𝜃଴ =  𝑒ିకమ௬ ,                                                                                                              (8.3.9) 

𝜃ଵ =  𝐸ଵ𝑒ିకమ௬ − 𝐸ଵ𝑒ିకర௬ ,                                                                                   (8.3.10) 

𝜙଴ =  𝑒ିకల௬ ,                                                                                                           (8.3.11)  

𝜙ଵ =  𝐸ଶ𝑒కల௬ − 𝐸ଶ𝑒కఴ௬ ,                                                                                      (8.3.12) 

𝑢଴ = 1 + 𝐶ଵ𝑒ିకభబ௬ + 𝐶ଶ𝑒ିకల௬ + 𝐶ଷ𝑒ିకమ௬ ,                                                     (8.3.13) 

 𝑢ଵ = ቐ
𝐶ସ𝑒ିకభమ௬ + 𝐶ହ𝑒ିకభబ௬ + 𝐶଺𝑒ିకల௬

+𝐶଻𝑒ିకమ௬ + 𝐶଼𝑒ିకఴ௬  + 𝐶ଽ𝑒ିకల௬

ቑ .                                                 (8.3.14) 

Thus the expression for the velocity, temperature and concentration profiles are as 

follows 
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𝑢(𝑦, 𝑡) =

⎩
⎪
⎨

⎪
⎧

1 + 𝐶ଵ𝑒ିకభబ௬ + 𝐶ଶ𝑒ିకల௬ + 𝐶ଷ𝑒ିకమ௬

+𝜀𝑒௡௧ ቌ
𝐶ସ𝑒ିకభమ௬ + 𝐶ହ𝑒ିకభబ௬ + 𝐶଺𝑒ିకల௬

+𝐶଻𝑒ିకమ௬ + 𝐶଼𝑒ିకఴ௬  + 𝐶ଽ𝑒ିకల௬

ቍ

⎭
⎪
⎬

⎪
⎫

 ,                      (8.3.15) 

𝜃(𝑦, 𝑡) = ൛𝑒ିకమ௬ + 𝜀𝑒௡௧൫𝐸ଵ𝑒ିకమ௬ − 𝐸ଵ𝑒ିకర௬൯ൟ ,                                         (8.3.16) 

𝜙(𝑦, 𝑡) = ൛𝑒ିకల௬ + 𝜀𝑒௡௧൫𝐸ଶ𝑒కల௬ − 𝐸ଶ𝑒కఴ௬൯ൟ ,                                             (8.3.17) 

The skin friction at the wall is given by 

𝜏 = ൬
𝜕𝑢

𝜕𝑦
൰

௬ୀ଴

= −

⎩
⎪
⎨

⎪
⎧

(𝐶ଵ𝜉ଵ଴ + 𝐶ଶ𝜉଺ + 𝐶ଷ𝜉ଶ)

𝜀𝑒௡௧ ቌ

𝐶ସ𝜉ଵଶ + 𝐶ହ𝜉ଵ଴ + 𝐶଺𝜉଺

+𝐶଻𝜉ଶ + 𝐶଼𝜉଼  + 𝐶ଽ𝜉଺

ቍ

⎭
⎪
⎬

⎪
⎫

                               (8.3.18) 

The rate of heat transfer in terms of Nusselt number is 

𝑁𝑢 = ൬
𝜕𝜃

𝜕𝑦
൰

௬ୀ଴

= − { 𝜉ଶ + 𝜀𝑒௡௧(𝜉ଶ − 𝜉ସ)𝐸ଵ}                                              (8.3.19) 

The rate of mass transfer in terms of Sherwood number is 

𝑆ℎ = − {𝜉଺ + 𝜀𝑒௡௧(𝜉଺ − 𝜉଼)𝐸ଶ} ,                                                                    (8.3.20) 

8.4 Validity: 

The present results are found in good agreement with the results of Kartikeyan 

(2013) in the absence of the mass transfer and chemical reaction parameter. 

Table 8.4(a): Comparison of the flow velocity profiles with Kartikeyan (2013) for 

different times when Gr = 6, Pr = 0.7, K =1, Q = 0.5, F =1, M = 3, n = 0.1, ε = 0.2, 

A=1 and ∅1 = 0.3: 
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Table 8.4(a) 

Present results Kartikeyan (2013) 

y t=1 t=3 t=5 t=1 t=3 t=5 

0.0 0.9869016 0.985065 0.9871037 0.9868610 0.985098 0.9871109 

0.2 1.4622913 1.520964 1.5870358 1.4622907 1.5209514 1.5870347 

0.4 1.2990856 1.3529170 1.4270674 1.2990901 1.3529201 1.4270501 

0.6 1.2350955 1.2973815 1.3571093 1.2350937 1.2973753 1.3571207 

0.8 1.2280961 1.2879350 1.3280624 1.2280868 1.2879276 1.3280395 

1.0 1.2279641 1.2880147 1.3275397 1.2279517 1.2880155 1.3275351 

 

Table 8.4(b): Comparison of the shear stress profiles with Kartikeyan (2013) for 

different heat generation and radiation when Gr = 2, Pr = 0.7, K =1, F =1, M = 2, n = 

0.1, t = 1, ε = 0.2, A=1 and ∅1=1: 

Table 8.4(b) 

Present results Kartikeyan (2013) 

M Q=0 Q=2 Q=4 Q=0 Q=2 Q=4 

0 0.6528597 0.5217811 0.4600972 0.6528762 0.5217709 0.4600972 

2 0.4175608 0.3580979 0.3274248 0.4175578 0.3580991 0.3274248 

4 0.3305581 0.2931631 0.2729917 0.3305672 0.2931647 0.2729917 

6 0.2834952 0.2567361 0.2418808 0.2834967 0.2567318 0.2418808 

 

In Table 8.4 (a), it has been seen that the velocity profiles are enhanced by the effect 

of time parameter. In Table 8.4(b), it is marked that the shear stresses are reduced by 

the effect of heat generation parameter. From both these Tables it is concluded that the 

absolute difference between the present and the previous results is very less than unity 

(<10-5) and which validated the flow model for further investigation. 
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8.5 Results and Discussion: 

The numerical calculations have been carried out to discuss physical 

significance of various parameters involved in the results (8.3.15) to (8.3.20). The 

effects of the key parameters entering in the governing equations on the velocity, 

temperature, concentration, skin friction, Nusselt number and Sherwood number are 

shown through graphs. 

 

 

 

Fig. 8.5 (i): Velocity distribution for M and Pr 

The effect of magnetic parameter M on velocity profiles in the boundary layer 

is depicted in Fig. 8.5(i) for both the cases of Pr = 0.025 (mercury) and Pr = 0.71 (air) 

by keeping other parameters of the flow field as constant. From this figure it is seen 

that the velocity starts from minimum value at the surface and is increased till it 

attains the peak value and then starts decreasing until the boundary condition matches 

as y  ∞ for all the values of the magnetic field parameter. It is interesting to note that 

the effect of magnetic field is to decelerate the velocity of the flow field to an 
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appreciable amount throughout the boundary layer. The effect of magnetic field is 

more prominent at the point of the peak value i.e. the peak value drastically decreases 

with increase in the value of the magnetic field because the presence of magnetic field 

in an electrically conducting fluid produces a force called the Lorentz force, which 

acts against the flow on application of the magnetic field in the normal direction. This 

type of resisting force slows down the fluid velocity as seen clearly in this figure. 

Smaller Pr fluids have higher thermal conductivities so that heat can diffuse away 

from the vertical surface faster than for higher Pr fluids (thicker boundary layers). 

 

 

Fig. 8.5 (ii): Velocity distribution for Q and Cr 

 

Fig. 8.5(ii) depicts the variation of dimensionless velocity profiles for different 

values of heat generation (Q) for both generative (Cr = 1.0>0) and destructive (Cr = - 

1.0<0) chemical reactions. It is observed from this figure that the velocity distribution 

is decreased at all points of the flow field with increasing in the heat generation. This 

shows that the destructive chemical reaction have an enhancing effect on the velocity 
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distribution of the flow field. It is interesting to note that the generative chemical 

reaction have the tendency in formation of depression velocity profile near the plate. 

Fig. 8.5 (iii) illustrates the effect of radiation (F) on the horizontal velocity in 

the momentum boundary layer with different slip parameters (∅1 = 0.3 and 10). We 

note from this figure that there is decrease in the horizontal velocity profiles with 

increase in the radiation parameter F. The increase of the radiation parameter F leads 

to decrease the boundary layer thickness and to enhance the heat transfer rate in the 

presence of thermal and solutal buoyancy forces. 

 

 

 

 

Fig. 8.5 (iii): Velocity distribution for F and 1 

 

The effect of porosity of the medium on velocity profiles in the boundary layer 

is depicted in Fig. 8.5(iv) for both the cases Sc =0.30 (Helium) and Sc =0.78 
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(Ammonia). From this figure it is seen that the velocity starts from minimum value 

zero at the surface and is increased till it attains the peak value and then starts 

decreasing until it reaches to the minimum value at the end of the boundary layer for 

all the values of porosity. It is significant to note that the effect of porosity is to 

increase the value of the velocity profile throughout the boundary layer. Moreover, the 

velocity profile decreases with increase in the value of Schmidt number (Sc) i.e. the 

presence of heavier diffusing species has a retarding effect on the velocity of the flow 

field. 

 

 

 

Fig. 8.5 (iv): Velocity distribution for K and Sc 

 

Fig. 8.5(v) depicts the variation of dimensionless temperature profiles for 

different values of heat generation (Q) rate and thermal radiation (F). It has been seen 

that the temperature profiles are decreased with increasing the heat source parameter 

Q which results in decreasing the thermal boundary layer thickness with stronger heat 
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generation. Further, it is observed that the temperature is decreased with increasing 

radiation parameter. This is due to the fact that the decrease in the values of the 

thermal radiation parameter decreases the flux of energy transport to the fluid and 

accordingly decreases the fluid temperature in the thermal boundary layer. Thus it is 

found that the effect of thermal radiation is to reduce heat transfer and due to which 

there is decrease in the thermal boundary layer thickness. 

 
 

 

 

Fig. 8.5 (v): Temperature distribution for Q and F 

 

The variation of the chemical reaction parameter (Cr) on concentration distribution 

of the flow field with the diffusion of the foreign mass is shown in Fig. 8.5(vi). The 

effect of chemical reaction parameter is very crucial in the concentration field; 

chemical reaction increases the rate of interfacial mass transfer. Generally, whenever 

the species concentration at the plate surface is higher than the free stream 
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concentration, a gradual decrease in the concentration profile is observed towards the 

free stream as in the present case. It is obvious that the influence of increasing the 

values of Cr decreases the concentration distribution across the solutal boundary layer. 

The chemical reaction reduces the concentration and hence increases its concentration 

gradient and its flux. Moreover, concentration distribution is decreased at all the points 

of the flow field with increase of the Schmidt number (Sc) which shows that heavier 

diffusing species have greater retarding effect on the concentration distribution of the 

flow field, due to the fact that the boundary layer thickness is greatly decreased with 

increase in the value of the Schmidt number. 

 
 

 
 

Fig. 8.5 (vi): Concentration distribution for Cr and Sc 

 

The velocity gradient at the plate y = 0 in terms of shear stress (𝜏) with the 

effects of generative chemical reaction (Cr) and heat generation (Q) is presented in 

Fig. 8.5 (vii). It is observed that an increase in Cr leads to decrease in the values of 

velocity gradients. In addition, the curves show the substantial decrease at the plate i.e. 
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the values of the shear stress fall heavily due to the bigger heat generation. Peak 

velocity is achieved near the plate which decays to the relevant free stream velocity. 

 

 

 

Fig. 8.5 (vii): Shear stress distribution for Cr and Q 

 

 

 

 

 

 

 

Fig. 8.5 (viii): Nusselt number distribution for F and Q 
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Fig. 8.5 (viii) illustrates the effects of heat generation (Q) and thermal radiation 

(R) on the temperature gradient in terms of Nusselt number (Nu). As depicted in this 

figure, the effect of increasing the value of Q is to increase the value of Nu distribution 

in the boundary layer. Moreover, Nu is raised by increasing the value of the thermal 

radiation. All the values of Nu are negative and hence it indicates that the heat is 

diffused towards the plate y = 0. 

 

 

 

Fig. 8.5 (ix): Sherwood number distribution for Cr and Sc 

 

Fig. 8.5 (ix) shows the effect of Schmidt number (Sc) and chemical reaction 

(Cr) on concentration gradient at the plate y = 0 in terms of Sherwood number (Sh). It 

is found that the Sherwood number is increased with increase in Schmidt number and 

chemical reaction. Moreover, Sh is raised by increasing the value of the Schmidt 

number (Sc). All the values of Sh are negative and hence it signifies that the mass has 

diffused towards the plate y = 0. 
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8.6 Conclusions: 

In this problem the influence of chemical reaction on MHD convective flow with 

heat and mass transfer past a semi-infinite vertical porous plate immersed in a Darcian 

porous medium in the presence of heat generation and slip flow has been analyzed. 

The suction velocity normal to the plate and the free stream velocity are considered 

here periodic functions.  The governing system of equations has been solved using 

perturbation technique. The effects of different key parameters on velocity, 

temperature, concentration and velocity, temperature, concentration gradients at the 

plate y = 0 were studied in details. Some important conclusions are given below: 

 

 Increasing the heat generation parameter reduces both velocity and 

temperature. 

 The velocity is increased with an increase in the permeability of the porous 

medium parameter. 

 It is seen that for small values magnetic field the flow velocity is overshoot in 

presence mercury (Pr = 0.025). 

 An increase in the thermal radiation (F) leads to decrease in the velocity and 

temperature. 

 Both the velocity and concentration are reduced with an increase in the 

Schmidt number (Sc). Moreover, the velocity and concentration are decreased 

with an increase in the chemical reaction parameter (Cr). 

 An increase in heat generation/radiation enhances the rate of heat transfer. 

 An increase in chemical reaction/Schmidt number escalates the rate of mass 

transfer. 

 The chemical reaction/ heat generation has a depressing effect on the shear 

stress (𝜏). 


