NOMENCLATURE

The standard notations are as follows:

 \vec{q} = Velocity vector of the fluid with Cartesian components u, v, w along x, y, z

directions respectively,

 \vec{F} = Body force per unit mass,

 \overrightarrow{B} = Magnetic induction vector,

 \vec{J} = Electric current density,

 $\vec{J} \times \vec{B}$ = Lorentz force per unit mass,

E = Electric field,

P = Pressure,

 μ_e = Magnetic permeability parameter,

Q = Heat source / Sink per unit mass,

D = Coefficient of chemical molecular diffusivity,

 σ = Electrical conductivity,

t = Time,

T = Temperature,

K = Permeability parameter,

C = Species concentration,

 ϕ = Viscous dissipation per unit mass. It represents the time rate, at which energy is being dissipated per unit volume through the action of viscosity.

$$\frac{\vec{J}^2}{\sigma} = \sigma \left[\vec{E} + \vec{q} \times \vec{B}\right]^2$$

The Joulean heat per unit mass.

 U_{∞} = The reference velocity,

L= The reference length,

u, v, w = Velocity components in x, y and z directions respectively,

 w_0 (>0) = Constant suction velocity of the liquid through the porous plane surface,

Z = Normal direction of vertical porous plane surface,

 \overline{Z} = Dimensional normal distance,

 \overline{C} = Dimensional species concentration,

 C_p = Specific heat at constant pressure,

g = Acceleration due to gravity,

Gm = Thermal Grashoff number,

Gr = Mass Grashoff number,

M = Hartmann number (magnetic parameter),

 \overline{K} = Permeability parameter,

Pr = Prandlt number,

Ec = Eckert number,

 Ω = Rotation parameter,

Sc = Schmidt number,

 θ = Temperature,

 λ = Injection/Suction parameter,

Da = Darcy number,

 C_w = Wall dimensional concentration,

 T_{∞} = Free stream dimensional temperature,

 C_{∞} = Free stream dimensional concentration,

 α = Fluid thermal diffusivity,

 $K_{\lambda w}$ = Absorption coefficient at the wall,

 $e_{b\lambda}$ = Planck's function,

R = Radiation parameter,

 ψ = Heat source parameter,

Cr = Chemical reaction parameter,

u = Non-dimensional fluid velocity,

 θ = Non-dimensional fluid temperature,

 Φ = Non-dimensional species concentration,

 τ_w = Wall shear stress,

 q_w = Local surface heat flux,

 Nu_x = Local Nusselt number,

 $Re_x =$ Local Renolds number,

 \overline{T} = dimensional temperature

 \bar{t} = Dimensional time,

 \overline{U} = dimensional velocity

A = Constant,

Q = Dimensionless heat generation /absorption parameter,

 S_0 = Soret number,

 \bar{q}_r , R= Local radiative heat flux,

 U_0 , n=Constants,

 ε and $\varepsilon A =$ small less than unity,

 v_0 = Scale of suction velocity,

Greek symbols

 β = Volumetric coefficient of thermal expansion,

 $\bar{\beta}$ = Volumetric coefficient of expansion with concentration,

 ε (0 < ε < 1) = A constant,

 κ = Thermal conductivity,

v = Kinematic viscosity,

 μ = Coefficient of viscosity,

 ρ = Density,

- \emptyset = Species concentration,
- ω = Frequency of oscillation of the plate temperature,
- $\overline{\omega}$ = Dimensional frequency,
- $\overline{\Omega}$ = Angular velocity of the rotating frame of reference,

Superscript

U' = Derivative of U with respect to z.

Subscript

W = Conditions on the porous plane surface,

 ∞ = Conditions away from the porous plane surface.