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2.1. Introduction: 

 

Magnetohydrodynamics deals with dynamics of an electrically conducting 

fluid, which interacts with a magnetic field. The study of MHD flow, through and 

across porous media, is of great theoretical interest because it has been applied to a 

variety of geophysical and astrophysical phenomena. Practical interest of such study 

includes applications in electromagnetic lubrication, boundary cooling, bio-physical 

systems and in many branches of engineering and science. In fact, flows of fluids 

through porous media have attracted the attention of a number of scholars because of 

their possible applications in many branches of science and technology. In fact a 

porous material containing the fluid is a non-homogeneous medium but it may be 

possible to treat it as a homogeneous one, for the sake of analysis, by taking its 

dynamical properties to be equal to the averages of the original non-homogeneous 

continuum. Thus a complicated problem of the flow through a porous medium gets 

reduced to the flow problem of a homogeneous fluid with some additional resistance. 

The hydrodynamic channel flow is a classical problem for which exact solution can be 

obtained Schllicting (1979). Eckert (1958) obtained the exact solution of Navier-

Stokes equations for the flow between two parallel porous plates with constant 

injection/suction. 

   

In view of numerous important engineering and geophysical applications of the 

channel flows through porous medium, for example in the fields of chemical 

engineering for filtration and purification processes, in the fields of agriculture, 

engineering for channel irrigation and to study the underground water resources, in 

petroleum technology to study the movement of natural gas, oil and water through the 

oil channel/reservoirs. A series of investigations have been made by different scholars 

like Ahmadi and Manvi (1971); Raptis (1983); Raptis and Perdikis (1985); Singh and 

Garg (2010) and Singh and Sharma (2001) where the porous medium is either 

bounded by a channel or by a plane surface. On the other hand, in view of the 

increasing technical applications using magnetohydrodynamic (MHD) effect, it is 
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desirable to extend many of the available hydrodynamic solution to include the effects 

of magnetic field for those cases where the viscous fluid is electrically conducting. 

The effect of a transverse magnetic field on free convective flows of an electrically 

conducting viscous fluid has been discussed in recent and past years by several 

authors, notably by Gupta 1969), Soundalgekar (1974), Mishra and Mudili (1976), 

Mahendra (1977), Sarojamma and Krishna (1981) and Singh and Garg (2009). Such 

types of flows have wide range of applications in aeronautics, fluid fuel nuclear 

reactors and chemical engineering. The various applications of MHD flows in 

technological fields have been complied by Moreau (1990). Recently Makinde and 

Mhone (2005) investigated the effects of radiative heat and magnetic field on the 

unsteady flow of a fluid through a channel filled with saturated porous media. This 

problem is further extended by Mehmood and Ali (2007) by considering the fluid slip 

conditions at the stationary plate. Major mistakes found in both the above (2005), 

(2007) studies had been marked by Singh and Garg (2010). Kuznetsov (1998) 

presented an analytical solution to the flow and heat transfer in Couette flow through a 

rigid saturated porous medium where the fluid flow occurs due to a moving wall and it 

is described by the Brinkman-Forchheimer-extended Darcy equation. The problem of 

free convection heat transfer flow through a porous medium bounded by a wavy wall 

and a vertical wall is studied by Ahmed (2008). A three-dimensional Couette flow 

through a porous medium with heat transfer has also been investigated by Ahmed 

(2009). Ahmed and Zueco (2011) investigated the effects of Hall current, magnetic 

field, rotation of the channel and suction/injection on the oscillatory free convective 

MHD flow in a rotating vertical porous channel when the entire system rotates about 

an axis normal to the channel plates and a strong magnetic field of uniform strength is 

applied along the axis of rotation. Ahmed (2010) investigated the effect of periodic 

heat transfer on unsteady MHD mixed convection flow past a vertical porous flat plate 

with constant suction and heat sink when the free stream velocity oscillates in about a 

non-zero constant mean. Moreover, Ahmed and Kalita (2013) investigated the effects 

of thermal radiation and magnetohydrodynamic forces on transient flow over a hot 

vertical plate in a Darcian regime. 
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  The aim of the present paper is to study the combined effects of 

injection/suction and magnetic field on the oscillatory flow through saturated porous 

medium bounded by two parallel porous plates. 

 

2.2. Mathematical Analysis: 

 

Consider a two-dimensional flow of a viscous, incompressible, electrically 

conducting, Newtonian fluid through saturated porous medium filled in an infinite 

horizontal channel. The plates of the channel are distance ‘𝑎 ’ apart. A coordinate 

system is chosen with 𝑥̅ –axis lies along the centerline of the channel and  𝑦ത - axis is 

normal to the planes of the plates. Both the lower and the upper stationary porous 

plates of the channel are subjected to the same constant injection and suction velocity. 

A homogeneous magnetic field   𝐵଴ is applied normal to the planes of the plates as 

shown in Figure-2.2 (i). The flow becomes oscillatory due to the time dependence of 

the pressure. All the physical quantities are independent of  𝑥̅ for the problem of fully 

developed laminar flow. Under all these assumptions the flow is depicted 

mathematically as: 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig.2.2 (i) Physical Model of the problem 
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Conservation of mass 
 

∂vത

∂yത
= 0                                                                                                                    (2.2.1) 

Conservation of momentum 

 

𝜕𝑢ത

𝜕𝑡̅
+ 𝑣̅  

𝜕𝑢ത

𝜕𝑦ത
= −

1

𝜌

𝜕𝑝̅

𝜕𝑥̅
+ 𝜈

𝜕ଶ𝑢ത

𝜕𝑦തଶ
−

𝜎𝐵଴
ଶ

𝜌
𝑢ത −

𝜈

𝐾ഥ
                                                  (2.2.2) 

The boundary conditions of the problem are 

൞
𝑢ത = 0 , 𝑣̅ = 𝑉   at  𝑦ത =

𝑎

2

𝑢ത = 0 , 𝑣̅ = 𝑉   at  𝑦ത = −
𝑎

2

ൢ                                                                             (2.2.3) 

On introducing the following non-dimensional quantities, 

⎩
⎪
⎨

⎪
⎧𝑥 =

𝑥̅

𝑎
 , 𝑦 =

𝑦ത

𝑎
, 𝑢 =

𝑢ത

𝑎
  , 𝑡 =

𝑡̅𝜈

𝑎
  , 𝑝 =

𝑝̅

𝜌𝑉ଶ
  ,

𝜆 =
𝑉𝑎

𝜈
  , 𝐷𝑎 =

𝐾ഥ𝑉

𝜈𝑎
, 𝑀 = 𝑎𝐵଴ඨ

𝜎

𝜇
⎭
⎪
⎬

⎪
⎫

                                              (2.2.4) 

into the equations (2.2.1) & (2.2.2) we get, 

𝜕𝑢

𝜕𝑡
+

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+

1

𝜆

𝜕ଶ𝑢

𝜕𝑦ଶ
− ൬

1

𝜆
𝑀ଶ +

1

𝐷𝑎
൰ 𝑢 ,                                                 (2.2.5) 

where 𝜌 is the density, 𝑡̅ is time, 𝑢ത is the axial velocity, 𝑣̅ is the transverse velocity, 𝜈 

is the kinematic viscosity, 𝑝̅ is the pressure, 𝐾ഥ is constant of permeability of the 

porous medium, 𝐵଴ uniform magnetic field, 𝜎 is electrical conductivity, 𝜆 is the 

injection/suction parameter, Da is the Darcy number and M is the Hartmann number. 

The transformed boundary conditions become 



44 
 

൞
𝑢 = 0 , 𝑣 = 𝑉  𝑎𝑡  𝑦 =

1

2

𝑢 = 0 , 𝑣 = 𝑉  𝑎𝑡  𝑦 = −
1

2

ൢ                                                                           (2.2.6) 

 

2.3 Method of solution: 

In order to solve equation (2.2.5) under the boundary conditions (2.2.6), let us 

assume the solution of the following form 

𝑢(𝑦, 𝑡) = 𝑢଴(𝑦)𝑒௜ఠ௧ , −
𝜕𝑝

𝜕𝑥
= Ω𝑒௜ఠ௧   ,                                                        (2.3.1) 

where Ω is constant and 𝜔 is the frequency of oscillations. 

Substituting expressions (2.3.1) into equations (2.2.5), we obtain 

𝑢଴
″ − 𝜆𝑢଴

ˊ − 𝑚ଶ𝑢଴ = −𝜆Ω  ,                                                                              (2.3.2) 

where 𝑚 = ට𝑀ଶ +
ఒ

஽௔
+ 𝑖𝜔𝜆  . 

The corresponding transformed boundary conditions become 

൞
𝑢 = 0 ,   at  𝑦 =

1

2

𝑢 = 0 ,   at  𝑦 = −
1

2

ൢ                                                                                      (2.3.3) 

Equation (2.3.2) is solved under boundary conditions (2.3.3) and the solution for the 

fluid velocity is obtained as under: 

𝑢(𝑦, 𝑡) =
𝜆Ω

𝑚ଶ
቎1 −

𝐶𝑜𝑠ℎ(𝐴ଵ𝑦)

𝐶𝑜𝑠ℎ ቀ
𝐴ଵ

2
ቁ

቏ 𝑒௜ఠ௧  ,                                                               (2.3.4) 

where  𝐴1 =
1

2
቎
𝜆 + ඥ𝜆2 + 4𝑚2

2
቏ . 

Knowing the fluid velocity (Real part), the shear stress (Real part) at the lower plate 

𝑦 = −1/2 is given by: 
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𝜏 = −𝜇 ൬
𝜕𝑢

𝜕𝑦
൰

௬ୀିଵ/ଶ

=
Ω𝜆

𝑚ଶ
𝑡𝑎𝑛ℎ ൬

𝐴ଵ

2
൰                                                          (2.3.5)  

 

2.4 Results and Discussion: 

The analytical solutions obtained in equation (2.3.4) and (2.3.5) for the 

velocity and skin friction have been calculated numerically to have a physical insight 

into the problem. The effects of variations of different parameters like the Darcy 

number (Da), injection / suction parameter (λ), Hartmann number (M) and frequency 

of oscillations (𝜔) on the velocity field (Real part of u) and skin friction ( Real part of 

𝜏) variations are presented graphically in Figures 2.4 (i) to 2.4 (iv) below. 

Figure 2.4 (i) shows the collective effects of Hartmann number (M) and Darcy 

number (Da) on the flow velocity (u) for different values of 𝜔 = 10, λ = 0.2, Ω= 10. 

The influence of M and Da on u profiles is therefore expected to be strong. This is 

indeed the case as seen in fig. 2.4 (i); for constant Da (= 0.3), with a rise in M, from 1, 

5 to 10 there is a strong reduction in velocity across the region y ∈ [−0.5, 0.5]. The 

flow is therefore decelerated with increasing Hartmann number owing to the 

corresponding increase in the Lorentizian hydromagnetic drag force. Moreover, with 

constant M = 1.0 value, as Da increases from 0.3 through 0.5 to 1.0, there is a distinct 

escalation in velocity across the region y ∈ [−0.5, 0.5]. A velocity peak arises in the 

middle of the channel for all profiles. No back flow is sustained throughout the 

channel. 

Figure 2.4 (ii) presents the flow velocity profiles for the effect of 

injection/suction parameter (λ) and frequency of oscillations 𝜔 for different values of 

M = 5, Da = 0.5, Ω = 10. With constant 𝜔 = 5, an increase in λ from 0.1 through 0.5 to 

1.0, the flow velocity is accelerated throughout the channel and attains its maximum 

velocity in the middle of the channel. Moreover with constant λ = 0.1, the flow 

velocity is decelerated throughout the channel when the frequency of oscillations rises 

from 5.0 through 10 to 15. No back flow is sustained throughout the channel. 
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Fig 2.4 (i): Velocity distributions for M and Da at t = 0 

 

  
 

Fig 2.4 (ii): Velocity distributions for  λ and  𝝎 at t = 0 
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Fig. 2.4 (iii): Variations of Skin friction for M and λ versus 𝝎 

 

Figure 2.4(iii) depicts the influence of the applied magnetic field (M) and 

injection-suction parameter (λ) on the non-dimensional coefficient of skin friction  𝜏 at 

the lower plate for different values of Da = 0.5, Ω = 10. The imposition of the 

magnetic field causes to decrease 𝜏. It is noticed that, the influence of injection/suction 

on  𝜏 is significantly elevated. The shear stress at the wall is therefore depressed with a 

rise in Hartmann number (M). For the higher values of 𝜔 (> 4.8), a significant flow 

reversal is sustained with maximum magnetohydrodynamic forces M = 5 and 10 i.e. 

shear stresses become negative. No flow reversal however arises for small frequency 

of oscillations. The back flow effect is still present for M = 5 (magnetic body force is 

five times the viscous hydrodynamic force), but is stifled somewhat and the inception 

of backflow is further delayed. However for  M =1 and λ = 0.2, 0.5 and 1.0, all 

backflow is eliminated entirely from the regime for all frequency of oscillations and 

only positive shear stresses arise at the plate. Generally with frequency of oscillations, 

shear stresses are found to reduce i.e. the flow is retarded. 
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Figure 2.4(iv) shows the distribution of shear stress at the lower plate for 

various Darcy numbers over frequency of oscillations for different values of M = 3, λ 

= 0.5, Ω = 10, Ω = 10. Again it is seen that the shear stresses are reduced substantially 

at the lower plate throughout the channel. For all 𝜔 > 4.8, flow reversal is observed for 

small Darcy numbers (Da = 0.1 and 0.5) and therefore, back flow is sustained 

throughout the regime. Shear stresses are significantly boosted with rising Darcy 

number from 0.1 through 0.5, 0.7 to 1.0. Significantly, shear stress at Da = 1.0 is more 

fluctuated than the others. 

 

  

 

 

 
 

Fig 2.4(iv): Variations of Skin friction for Da versus 𝝎 
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2.5 Conclusions: 

 A theoretical model has been presented for the hydromagnetic unsteady 

boundary layer flow from a horizontal channel bounded by two parallel plates filled 

with saturated porous medium with transverse magnetic field effects, subject to a 

constant suction/injection velocity. Analytical solution for the non-dimensional 

momentum equation subject to transformed boundary conditions has been obtained. 

The flow has been shown to be accelerated with increasing suction/injection 

parameter, but reduced with Magnetic field. Increasing Hartmann number also 

decreases the shear stresses. A positive increase in Da strongly accelerates the flow. 

The study has important applications in materials processing and nuclear heat transfer 

control, as well as MHD energy generators. 


