

REV-00 MSC/10/14

> M.Sc. CHEMISTRY Third Semester Spectroscopy-II (MSC - 14)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive)=50

(PART-B: Descriptive)

Marks: 50

 $5 \times 5 = 25$

Duration: 2 hrs. 40 mins.

1. Answer the following questions: (any five)

- *a)* Write the selection rule for P, Q and R branches of rotational fine structure and calculate the frequencies of each branch in terms of rotational constant. Explain, how a band head is formed?
- *b)* State Frank-Condon principle and apply this principle to explain the intensity distribution of vibrational bands in electronic transitions of diatomic molecules.
- c) Give the basic principles of ESR spectroscopy and deduce the expression for the frequency of ESR spectral line.
- *d)* What do you mean by hyperfine structure in ESR spectral line? State the causes of it. Draw the ESR spectra of ethyl radical anion.
- *e)* What is Mossbauer effect? Discuss the principle of it and calculate the condition to observe the Mossbauer shift.
- *f)* Discuss the properties of Mossbauer nuclides. Calculate the expression for isomeric shift in terms of electron density.
- g) What are different types of electronic transitions in organic molecules? State the selection rules of these transitions. What changes can you expect if the solvent is polar?

2014/03

2. Answer the following questions: (any five)

- *a)* Write down the principles of mass spectrometry and show that this technique is different from conventional spectroscopic technique. What do you mean by molecular ion peak?
- b) Discuss the chemical ionization (CI) technique used in mass spectrometry.
- c) Show how you can separate ions of various (m/e) values with the help of magnetic sector analyser. Distinguish magnetic scanning and electric voltage
 scanning. Define resolving power of a mass spectrometer.
- *d)* Discuss how the presence of isotopes of an element can be detected in the mass spectra. Explain it with the help of mass spectra of 1-bromohexane.
- e) Write short notes on:

(i) Metastable ion peak, (ii) phosphorescence

- f) Write down the properties of LASER radiation. State the conditions to obtain LASER radiation and explain how can you achieve it.
- g) Consider benzene in a circular ring. Assume C-C bond length in benzene is 1.40
 Å. Find the wavelength of the first electronic band in benzene. Assume C-C bond length is equal to radius of the ring.

REV-00 MSC/10/14

2014/03

M.Sc. CHEMISTRY Third Semester Spectroscopy-II (MSC - 14)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes

Marks - 20

PART A- Objective Type

I. Select and put ' $\sqrt{}$ ' mark on the appropriate answer: $1 \times 20 = 20$

- **1.** The shift of an absorption maximum towards longer wavelength is known as:
 - (a) Hypsochromic effect
 - (b) Hyperchromic effect
 - (c) Bathochromic effect
 - (d) Hypochromic effect
- **2.** Movement of nuclei is negligible during the time taken by an electronic transition. It is called:
 - (a) Frank Condon principle
 - (b) Born-Oppenheimer approximation
 - (c) Lambert Beer law
 - (d) Hund's rule
- 3. Electronic excitations occur in the range of:
 - (a) 200 nm to 780 nm
 - (b) 220 nm to 500 nm
 - (c) 250 nm to 700 nm
 - (d) 290 nm to 1000 nm
- 4. Increase of polarity of solvents shift $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ band respectively to:
 - (a) Shorter and longer wavelength
 - (b) Shorter and shorter wavelength
 - (c) longer and shorter wavelength
 - (d) longer and longer wavelength

- 5. The correct order of energies in the transition is: (a) $\sigma \to \sigma^* > n \to \sigma^* > \pi \to \pi^* > n = \pi^*$
 - (b) $n \to \sigma^* > \pi \to \pi^* > \sigma \to \sigma^* > n \pi^*$
 - (c) $\pi \to \pi^* > n \to \sigma^* > \sigma \to \sigma^* > n \pi^*$
 - (d) $n \to \sigma^* > n \to \pi^* > \pi \to \pi^* > \sigma \to \sigma^*$
- 6. The correct order of shift of wavelength in disubstituted benzene is:
 - (a) para > meta > ortho
 - (b) ortho >meta > para
 - (c) meta> ortho >para
 - (d) ortho> para >meta
- 7. Transitions involving d-orbitals are:
 - (a) Laporte forbidden
 - (b) Laporte allowed
 - (c) Spin allowed
 - (d) Spin forbidden
- **8.** Laporte allowed transitions involved:
 - (a) $g \rightarrow g$
 - (b) $g \rightarrow u$
 - (c) $u \rightarrow u$
 - (d) all
- 9. Optical rotation and circular dichroism together are known as:
 - (a) Optical rotator dispersion (ORD)
 - (b) Cotton effect
 - (c) Frank- Condon principle
 - (d) Stark effect
- 10. When, $I_x < I_y = I_z$, then the molecule is:
 - (a) oblate
 - (b) prolate
 - (c) asymmetric top
 - (d) linear
- 11. The rotational spectrum of a rigid diatomic rotor consists of equally spaced lines with spacing equal to (B is rotational constant)
 - (a) 2B
 - (b) B
 - (c) B/2
 - (d) 3B

12. The increasing order of stretching frequencies for $C \equiv c$, C = c, c = c is:

- (a) $C C \quad C = C > C \equiv C$
- (b) c≡=c c==c c−−c
- (d) c==c c==c c--c

13. For two equivalent protons, the numbers ESR lines are:

- (a) 1
- (b) 2
- (c) 3
- (d) 4

14. The system which will not show ESR spectrum is:

(a) CO_2

- (b) CH₃
- (c) Cu^{2+}
- (d) Na^+

15. Spectroscopically detectable energy are called:

(a) Term

(b) Orbitals

(c) Microstates

(d) None

16. In alkali metal spectra every component level is:

- (a) Doublet excluding S level
- (b) Quartet excluding S level
- (c) Triplet
- (d) Singlet

17. Charge transfer transition may be regarded as:

(a) Internal redox process

- (b) Oxidation process
- (c) Adsorption
- (d) Absorption

18. The vibrations, without a centre of symmetry are active in:

- (a) Infrared but inactive in Raman
- (b) Raman but inactive in IR
- (c) Both (a) and (b)
- (d) None

19. The expression for calculating the fraquency of vibration of a diatomic molecule is:

(a)
$$v = \frac{1}{2\pi c} \sqrt{\frac{k}{\mu}}$$

(b) $v = \frac{1}{2\pi^2} \cdot \frac{k}{\mu}$
(c) $v = \sqrt{\frac{k}{\mu^2}}$
(d) $v = \frac{1}{2\pi} \cdot \frac{k^2}{\mu}$

20. Mossbauer effect is greater at lower temperatures becuase it depends on:

(a) Recoil free fraction of the total γ ray emitting atoms

- (b) Doppler shift
- (c) Isomers shift
- (d) None