M.Sc. ELECTRONICS First Semester Engineering Mathematics & Statistics (MSE-01)

Duration: 3Hrs.

Full Marks: 70

Part-A (Objective) =20 Part-B (Descriptive)=50

(PART-B: Descriptive)

Duration: 2 hrs. 40 mins.

Marks: 50

1. Answer the following questions (any five):

2×5=10

- (a) Find L{f(t)} where f(t)=k, k is constant and $t \ge 0$
- (b) Prove Curl (u + v) = Curl u + Curl v.
- (c) Define even and odd function.
- (d) Find the Z-transform of $(1/2)^{k_1}$.
- (e) Find, $L\left\{\int_{0}^{t} \frac{1-e^{-u}}{u} du\right\}$.
- (f) Prove that for any two events A and B in a sample space S, $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- (g) Write applications of Laplace Transform.

2. Answer the following questions (any five):

3×5=15

- (a) Prove, div(vxu) = v.Curlu + u.Curlv
- (b) Prove that the Fourier transform of the convolution of f and g is the product of their Fourier transform.
- (c) If $Z[\{f(k)\}]=F(z)$, then prove that $Z[\{kf(k)\}]=-z\frac{d}{dz}F(z)$.
- (d) Prove that Poisson distribution is the limiting case of binomial distribution for every large trail with very small probability. i.e. $f(x; \lambda) = \lim_{\substack{n \to \infty \\ p \to 0}} b(x; n, p)$ such that $\lambda = np = \text{constant}$.
- (e) Calculate $\int_{C} F(r(t)) dr(t)$, where $F = [y^2, -x^2]$ and C the straight line from (0, 0) to (1, 4).

- (f) Find the directional derivative and unit normal vector of f at p in direction of the vector a where, $f = x^2 + y^2 25$, p(1, 1, 1) and a = i + j + k.
- (g) If $L\{f(t)\}=F(s)$ then prove that $L\left\{\frac{f(t)}{t}\right\}=\int_{s}^{\infty}F(u)du$.

3. Answer the following questions (any five):

5×5=25

- (a) Show that $\iint_S (F.n)ds = 0$, where F represents the velocity of a liquid and S is the surface of the bounded by the plane x=0, x=1; y=0, y=1; z=0, z=1, $F = 4xzi y^2j + yzk$.
- (b) Apply Stoke's theorem to calculate $\int (x+2y)dx+(x-z)dy+(y-z)dz$ where C is the boundary of the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6) oriented in the anticlockwise direction.
- (c) Find the Fourier series representing f(x) = x, $0 < x < 2\pi$.
- (d) Find the variance of binomial distribution.
- (e) Using convolution theorem, obtain the inverse Laplace transform of $\frac{7}{(\lambda-7)(\lambda^2+25)}$
- (f) Find Z-transform of sin(3k + 5).
- (g) Find the Fourier series of the function,

$$f(x) = \begin{cases} -1 & \text{for } -\pi < x < \frac{-\pi}{2} \\ 0 & \text{for } \frac{-\bar{\pi}}{2} < x < \frac{\pi}{2} \\ 1 & \text{for } \frac{\pi}{2} < x < \pi \end{cases}$$

M.Sc. ELECTRONICS

First Semester Engineering Mathematics & Statistics

(MSE-01)

(The figures in the margin indicate full marks for the questions)

Duration: 20 minutes		Marks - 20
	PART A- Objective Type	
. Choose the correct answer:		1×20=20

Cho	ose the correct answ	er:			
1.	The value of $P(\varphi)$ is (a) 0	(b) 1	(c) 0.05	(d) 0.9	
2.	For any event A of S , (a) $P(A^C) \le 0$		(c) $P(A^C) \le 0.5$	$(d) P(A^C) \le 0.9$	
3.	The value of $P(S)$ is, (a) 0	where S is a sample s (b) 1	pace (c) 0.05	(d) 0.9	
4.	$P(B A) = ?$ (a) $\frac{P(A \cup B)}{P(A)}, P(A) \neq 0$ (c) $\frac{P(A \cup B)}{P(B)}, P(B) \neq 0$		(b) $\frac{P(A \cap B)}{P(A)}$, $P(A) \neq 0$ (d) $\frac{P(A \cap B)}{P(B)}$, $P(B) \neq 0$		

- **5.** If Laplace Transform $L\{f(t)\}=F(S)$ then $L\{-tf(t)\}=?$
 - (a) f(t)
- (b) F(t)
- (c) $\frac{d}{ds} f(s)$
- $(d)\frac{d}{ds}F(s)$
- **6.** Laplace Transform of unit step function, $L\{u(t-a)\}=?$
- (b) $\frac{s}{e^{-as}}$ (c) $\frac{se^{-as}}{a}$
- (d) $\frac{ae^{-as}}{s}$
- 7. (1) Laplace Transform solves non-homogeneous D.E. without the necessity of 1st solving the corresponding homogeneous D.E.
 - (2) Laplace Transform is applicable not only to continuous function but also to piecewise continuous

Which of the following options is correct:

(a) (1) is true

- (b) (2) is true
- (c) Both (1) and (2) are true
- (d) Both (1) and (2) are false.

