M.Sc. PHYSICS

STATISTICAL PHYSICS MSP – 401 (Use Separate Answer Scripts for Objective & Descriptive)				
	[<u>PART-A: (</u> Time: 20 min.	<u>Obje</u>	ective)	Marks: 20
0	Choose the correct answer from the j	foll	owing:	1X20=20
1.	The Γ-space may be considered as a superpola. μ-space c. phase-space	b.	on of rr-space none of these	
2.	Which of the following particles follow Ferma. Photon c. Proton	b.	irac Statistics Kaons None of the options	
3.	If the cells are of equal size then they have the thermodynamic probability c. density	b.	ime a priori probability none of these	
4.	How many possible numbers of ways to a spaces? a. 20 c. 8	b.	ge 3 indistinguishable 32 16	particles into four
5.	Which among the following has fluctuation a. Micro-canonical ensemble c. Grand-canonical ensemble	b.	nergy? Canonical ensemble Both options b.& c.	
6.	In the case of strong degeneracy of an ideal for the constant α a. α is small c. $0 < \alpha < 1$	b.	ni-Dirac gas, which con α is large None of the options	dition is necessary
7.	The probability of finding a phase point in a proportional to the a. accessible states c. thermodynamic probability	b.	earticular region of pha density volume	se space is directly
8.	What is the formulation for the spin degenda. 2s+1 c. s+1	b.	/ gs 3s+2 None of the options	
9.	According to Gibb's, which of the following conservation of density in phase-space? a. $\partial \rho$		ression represents the p	orinciple of

$$\frac{\partial \rho}{\partial t} = 0$$

b.
$$\partial \left(\frac{\partial \Gamma}{\partial t} \right) = 0$$

$$^{\mathrm{c.}} \partial \left(\frac{\delta N}{\partial t} \right) = 0$$

$$^{\rm d.}\rho\frac{d}{dt}(\delta\Gamma)=0$$

10. Which condition holds true for the implementation of Stirling's Approximation?

11. Many different microstates may correspond to --

a. the same macrostate

b. different macrostate

- c. indefinite macrostate
- d. no macrostate
- 12. Which energy is usually used for calculation of thermodynamic states?
 - a. Potential

b. Kinetic

c. Chemical

- d. Gravitational
- 13. The Helmholtz free energy in terms of partition function can be expressed as -----

a.
$$F = kT log Z$$

b. $F = k \log Z$

c.
$$F = \sigma T log Z$$

d.
$$F = \sigma log Z$$

14. In which form of statistics is the number of particles limited?

a. Bose-Einstien

b. Maxwell-Boltzmann

c. Fermi-Dirac

d. None of the options

15. In a grand canonical ensemble, the grand potential can be expressed as ------

a.
$$\Omega = Ts - U - \mu N$$

b. $\Omega = U - TS - \mu N$

c.
$$\Omega = U + TS - \mu N$$

d.
$$\Omega = U - TS + \mu N$$

16. The probability of getting 7 heads and 4 tails in tossing a coin 10 times is ------

a. 1/1024 c. 120/1024

b. 12/1024

d. 124/1024

17. Which among the following obey Maxwell-Boltzmann statistics?

a. photon

b. neutron

c. oxygen molecule

d. hydrogen-molecule

18. The compounded probability of two occurrences is always

a. Additive

b. Subtractive

c. Multiplicative

d. Divisive

19. The instantaneous position of a particle in the phase-space is represented by a point known as,

a. phase point

b. representative point

c. both (i) & (ii)

d. none of these

20. The total thermodynamic probability is given by:

$$\Omega = \sum_{i} \frac{\omega_{i}}{N}$$

$$\Omega = \sum_{i} \omega_{j}$$

$$\Omega = \frac{\sum \omega_j}{N}$$

d. None of the options

PART-B: Descriptive

Time: 2 hrs. 40 min. Marks: 50

[Answer question no.1 & any four (4) from the rest]

- a. Which Liouville's theorem is related to establish the Gibb's principle
 of conservation of extension in phase space and Why?
 - b. Express entropy in terms of partition function.
- a. Explain the importance of the Partition function.
 b. Explain the case of degeneracy in an ideal Bose Einstein gas
- 3. a. Deduce the Maxwell-Boltzmann distribution law.

 5+3+2=
 10
 - b. Show that the internal energy of harmonic oscillator of frequency γ

$$E = h\gamma \left(\frac{1}{2} + \frac{1}{e^{\theta} - 1}\right)$$
, where $\theta = \frac{h\gamma}{kT}$

- c. Calculate entropy at absolute zero.
- 4. a. Define the exchange symmetry for Fermi-Dirac and Bose-Einstein 6+4=10 particles.
 - b.Explain how the Fermi-Dirac Statistical distributions can be used for practical applications like electronics
- 5. a. Deduce the expression of entropy in terms of partition function fora 7+3=10 canonical ensemble.
 - b.Show that the entropy of a system in canonical ensemble can be expressed as

$$\sigma = -\sum \rho_r \, \log \rho_r$$

where P_r is the probability of the system to be found in i^{th} state.

6. a. Derive the Energy of an ideal Fermi-Dirac Gas.

7+3=10

b. Explain the cases of degeneracy for an ideal Fermi-Dirac Gas.

7. a. Show that for grand canonical ensemble, the Gibb's free energy is $G=\mu \bar{n}$

7+3=10

b.Show that for a perfect gas represented by a grand canonical ensemble,

the probability of finding the sub-system with n atoms is given by Poisson's distribution.

 $w(n) = \frac{1}{n!}(n)^n exp. - (n)^n$

8. Deduce the Bose Einstein statistical Distribution function

10
