SET

B.Sc. ZOOLOGY THIRD SEMESTER FUNDAMENTALS OF BIOCHEMISTRY BSZ-303

[USE OMR SHEET FOR OBJECTIVE PART]

Duration: 3 hrs.

Time: 30 mins.

(Objective)

Full Marks: 70 Marks: 20

Choose the correct answer from the following:

 $1 \times 20 = 20$

- 1. Solution that have more hydrogen ion than water are called as:
 - a. Acid
 - c. Buffer

- b. Base
- d. Salt
- 2. The number that describe the acidity of a particular molecule is called as:
 - a. pH

b. Buffer

c. pKa

- d. Alkali
- 3. On the basis of titration where a pH indictor shows equivalence, that state is called as:
 - a. Neutral state

b. Transition state

c. Alkaline state

- d. Acidic state
- 4. A mixture of weak acid and conjugate base is called as:
 - a. Alkaline solution

b. Acidic solution

c. Inorganic buffer

- d. pH indicator
- 5. The numbers of substrate molecule converted into product per active site of enzyme in one second is called:
 - a. Turnover number

b. 1/2 Vmax

c. Km

- d. Vmax
- 6. When fat is shaken with water and alkali it forms:
 - a. Soap

b. Emulsion

c. Foam

- d. All of the above
- 7. The distance between one base pair to another in a DNA molecule is:
 - a. 20 A°

b. 34 A°

c. 3.4 A°

- d. 2 A°
- 8. To inhibit an enzyme action uncompetitive enzyme inhibitor binds with:
 - a. Active site of the enzyme
- b. Substrate body

c. Enzyme's body

- d. None of the above
- If the product of an enzymatic step can inhibit the earlier step of that enzyme, then the inhibition is called as:
 - a. Competitive inhibition
- b. Uncompetitive inhibition
- c. Non competitive inhibition
- d. None of the above
- 10. Which one is the vegetable enzyme?
 - a. Papain

- b. Pepsin
- c. Ptyalin d. Erepsin

11.	Glycolysis occurs in: a. Cytoplasm c. Mitochondria	b. Nucleus d. Ribosome
12.	High concentration of Glucose 6 pho a. Pyruvate kinase c. Phosphofructokinase I	osphate is inhibitory to: b. Hexokinase d. All of the above
13.	Number of CO ₂ molecules evolved i a. 1 c. 3	in glycolysis is: b. 2 d. 0
14.	From each molecule of glucose, how a. 1 c. 3	many times does the TCA cycle occur? b. 2 d. 4
15.	The product formed in the first subs a. Pyruvate c. 1, 3-bisphosphoglycerate	strate level phosphorylation in glycolysis is b. 3-phosphoglycerate d. 2-phosphoglycerate
16.	Which process transports the acyl C a. Simple diffusion c. Carnitine transport	b. Passive transport d. Active transport
17.	The free fatty acids are transported a. Albumin c. β-lipoprotein	by blood association with: b. A fatty acid binding protein d. None of the above
18.	Where are the enzymes for β-oxidat a. Nucleus c. Golgi apparatus	ion present? b. Cytosol d. Mitochondria
19.	Which of the following is the first co a. Cytochrome aa ₃ c. NADH dehydrogenase	omplex (complex I) of ETS? b. Cytochrome bc1 d. ATP synthasese
20.	For its activity, pyruvate decarboxyla. Mg ²⁺ c. H+	lase requires: b. Ca ²⁺ d. Na ⁺

(Descriptive)

Time: 2 hr. 30 mins. Marks: 50 [Answer question no.1 & any four (4) from the rest] 1. Describe glycolysis. What is the significance of glycolysis? 8+2=10 8+2=10 2. Explain TCA cycle. How many ATP produced from one TCA cycle? 3. What do you mean by pH and pKa, describe briefly. Mention the 4+1+5=10 formulas used to calculate pH and pKa. Describe 5 differences between acid and base. 4+3+3=10 4. Classify nucleic acid. Describe the structure of Nucleic acid. Mention its significance. 5+5=10 5. Describe the nature of enzymes. Write briefly about enzyme inhibition. 5+5=10 6. Describe about the different classes of amino acids with diagram. What are essential and non-essential amino acids? Describe with examples. 7. Where oxidation of fatty acid takes place? What are the four steps of β -1+7+2=10 oxidation of fatty acid? How many ATP produced from 14-Carbon fatty acid? 10 8. Explain Electron Transport System (ETS) with suitable diagram.

== *** = =