M.Sc. MATHEMATICS THIRD SEMESTER SPECIAL THEORY OF RELATIVITY MSM - 305A

[USE OMR SHEET FOR OBJECTIVE PART]

SET

2022/12

Full Marks: 70

Objective

Time: 30 min.

Duration: 3 hrs.

Marks: 20

Choose the correct answer from the following:

1X20=20

- 1. A train is moving with an initial velocity 2km/hour. After some time its velocity gradually increases. Motion is
 - a. Uniform

b. Absolute

c. Non-Uniform

- d. Relative
- 2. Great American Relativist R.C Tolman stated that
 - a. All laws of physics must be same & speed of light is constant
 - b. Einstein's Theory of Relativity may be regarded as based on the fundamental idea of Relativity of all motion.
 - c. All laws of physics must be same & speed of light is variable
 - d. Einstein's Theory of Relativity may be regarded as based on the Absolute motion of Relativity of all motion.
- Relativistic Theorem is 3.

 $u = \frac{u' - v}{u'}$ – u,u^\prime are respectively the velocity of particle according to S and S^\prime

and v, c are velocities of moving frame and light

 $u = \frac{u' - v}{1 + \frac{vu'}{2}} u, u'$ are respectively the velocity of particle according to S and S' c^2

and v, c are velocity of moving frame and light

 $\frac{u + v}{1 + \frac{vu'}{c^2}}$, u, u' are respectively the velocity of particle according to S and S'

and ,v,c are velocities of moving frame and light

 $u = \frac{u' + v}{u}$, u' are respectively the velocities of particle according to S and S' $1-\frac{vu'}{}$ c^2

and ,v,c are velocity of moving frame and light

- a. Light is electromagnetic phenomenon
- b. It is wave propagating in vacuum
- c. Newton's law of Mechanics are same
- d. None of the above

a.
$$\frac{dx}{d(ct)} < 1$$

b.
$$\frac{dx}{d(ct)} > 1$$

c.
$$\frac{dx}{d(ct)} = 1$$

None of the above

6. The value of
$$\delta^{\mu}{}_{\alpha}$$
 in terms of fundamental metric tensor is

a.
$$g^{\mu}_{\nu}g^{\nu}_{\alpha}$$

d.
$$g^{\mu\nu}g_{\nu\alpha}$$

7.
$$m, m_0, m - m_0$$
 are respectively called for a moving particle with velocity u

- a. Rest mass, total mass and dynamic mass of the moving particle
- b. Dynamic mass ,rest mass and total mass of the moving particle
- c. Total mass, rest mass and dynamic mass of the moving particle
- d. None of the above
- 8. Four-dimensional Euclidean flat space time is

a.
$$dS^2 = dx^2 + dy^2 + dz^2 - c^2 dt^2$$

c. $-(dS^2 = dx^2 + dy^2 + dz^2) + c^2 dt^2$

b.
$$dS^2 = dx^2 + dy^2 + dz^2 + c^2 dt^2$$

a.
$$c^2 < \frac{\left|x_2 - x_1\right|^2}{\left(t_2 - t_1\right)^2}, i, eS^2_{12} < 0$$

b.
$$c^2 > \frac{|x_2 - x_1|^2}{(t_2 - t_1)^2}, i, eS^2_{12} > 0$$

c.
$$c^2 = \frac{|x_2 - x_1|^2}{(t_2 - t_1)^2} i, eS^2_{12} = 0$$

d.
$$c^2 \neq \frac{|x_2 - x_1|^2}{(t_2 - t_1)^2}, i, eS^2_{12} \neq 0$$

10.
$$\left(1 - \frac{1}{n^2}\right)$$
 is known as

- a. Fresnel Drag constant
- b. Fresnel Drag coefficient
- c. Fresnel Drag variable
- d. None of the above

11. Result of Galilean Transformation is

- a. Both of classical physics and electromagnetic laws are invariant under Galilean transformation.
- b. All classical physics laws are not invariant but Maxwell's electromagnetic laws are invariant under Galilean Transformation.
- c. All classical physics laws are invariant but Maxwell's electromagnetic laws are not invariant under Galilean Transformation.
- d. None of the above

12. Lorentz Transformation Equations are

a.
$$x' = \frac{x - vt}{\sqrt{1 + \frac{v^2}{2}}}$$

$$y' = y$$

$$t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$y' = y$$

$$z'=z$$

$$t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$x' = \frac{x + vt}{\sqrt{1 - \frac{v^2}{c^2}}}$$

$$y' = y$$

$$z'=z$$

$$t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$$

d. None of the above

- 13. The Condition for Lorentz transformation transform to Galilean Transformation is
 - a. Velocity of moving frame is very very greater than the velocity of light

 - c. Both A& B

- b. Velocity of moving frame is very very less than the velocity of light
- d. None of the above
- 14. Postulates of Special Theory of Relativity are
 - a. Principle of Relativity & Universal Constancy of light
 - b. All laws of physics must be same in all inertial frame of reference & light is absolute
 - c. Newton's law & Maxwell's law
 - d. None of the above
- 15. Which of the following option is correct, where l is the length of the rode measured from observer S and l' is the length of the rode measured from observer S'
 - a. l' > l , where l, l' are the length measured from S, S'
 - b. l' < l , where l, l' are the length measured from S, S'
 - c. l' = l, where l, l' are the length measured from S, S'
 - d. l' < l, where l, l' are the length measured from S', S

- 16. Result of Michelson-Morley Experiment is
 - a. Earth velocity relative to Ether is constant
 - b. Earth velocity relative to Ether is variable
 - c. Earth velocity relative to Ether is negligible
 - d. Earth velocity relative to Ether is zero
- 17. Relation between charge density and current density is
 - $\sigma=ju$, where j is the current density, σ is the charge density and u velocity of moving electron
 - b. $j = \sigma u$, where j is the current density, σ is the charge density and u velocity of moving electron
 - $j=-\sigma u$, where j is the current density, σ is the charge density and u velocity of moving electron

 - d. None of the above
- 18. One of the consequence of Lorentz Transformation is
 - a. Relativity of Simulteniety
- b. Galilean Equation
- c. Doppler's effect

- d. Relativistic Equation
- 19. Which of the following is correct
 - a. $\sigma = \left(\frac{\sigma_0}{m_0}\right)p$, where j is the current density, σ_0 , m_0 is the charge density and mass

at rest position of the electon,, p is the momentum

b.
$$j = \left(\frac{\sigma_0}{m_0}\right) p$$
 , where j is the current density, σ_0 , m_0 is the charge density and mass

at rest position of the electon,, p is the momentum

c.
$$j = \left(\frac{\sigma_0}{m_0}\right) q$$
, where j is the current density, σ_0 , m_0 is the charge density and mass

at rest position of the electon,, p is the momentum

d.
$$j=-\left(\frac{\sigma_0}{m_0}\right)p$$
 , where j is the current density, σ_0 , m_0 is the charge density and

mass at rest position of the electon,, p is the momentum

- 20. The material particle travelling slower than light and having real mass is called
 - a. Tachyons

b. Luxons

c. Tardyons

d. None of the above

Descriptive

Time: 2 hrs. 30 mins. Marks:50

[Answer question no.1 & any four (4) from the rest [

What is the principle of Relativity? Prove the statement "Einstein boldly rejected the existence of Ether"by any experiment. What do you mean by Euclidean Space time? Find the four-2+8=10 dimensional invariant length element? 3. What are the four Maxwell's electromagnetic equations. Prove that 4+6=10 they are invariant. 4. Is Maxwell's Electromagnetic equations are invariant under Galilean 1+9=10 Transformation? Explain about the invariancy of Electromagnetic equation What do you mean by charge density and current density? Prove that 3+7=10 $\left| \frac{\sigma_0}{p} \right|$ if it is correct and give special meaning of each symbol. In Minkowski Geometry write the definition of three particles 3+2+5 =10a. Tachyons b. Tardyons c. Luxions Write the condition of time-like interval and space-like interval? Draw the diagram of world line of different type of particles? 7. Write four differences of Galilean transformation and Lorentz 4+6=10 transformation? What is the importance of Lorentz transformation? What are the real life example of consequence of Lorentz Transformation? Explain any two consequences of Lorentz 3+3+4 =10transformation.

> == *** == [5]

2+8=10