2022/12 SET ## M.Sc. CHEMISTRY THIRD SEMESTER INORGANIC CHEMISTRY III MSC - 301**[USE OMR FOR OBJECTIVE PART]** Duration: 3 hrs. [PART-A: Objective] Time: 30 min. Choose the correct answer from the following: 1X20 = 20 Full Marks: 70 Marks: 20 - 1. The mechanism of the reaction between [Fe(CN)₆]⁴⁻ and [Fe(bpy)₃]³⁺ (bpy=2,2'bipyridine) is - a. Outer-sphere electron transfer - b. Inner-sphere electron transfer c. Self exchange reaction d. Ligand exchange followed by electron 2. Consider the reaction $\begin{array}{lll} A.[Cr(H_2O)_6]^{2+} + [CoCl(NH_3)_5]^{2+} & & & & & & & & \\ E.[Fe(CN)_6]^{4-} & + [Mo(CN)_8]^{3-} & & & & & & & \\ & & & & & & & & \\ \hline \end{array} \\ \begin{array}{lll} Fe(CN)_6]^{3-} & + [Mo(CN)_8]^{4-} \end{array}$ Which one of the following is the correct statement - a. Both involve in inner-sphere mechanism - b. Both involve in outer sphere mechanism - c. Reaction A follows inner sphere and reaction B follows outer sphere mechanism - d. Reaction B follows inner sphere and reaction A follows outer sphere mechanism - 3. The reaction of Ni(CO)4 with the ligand L (L= PMe3 or P(OMe)3 yields Ni(CO)3L. The reaction is - a. Associative b. Dissociative c. Interchange(Ia) d. Interchange(Id) - 4. Syngas is mixture of - a. CO and H₂O b. CO and H₂ c. CO2 and H2 - d. CO2 and H2O - 5. The first step of hydroformylation reaction is inhibited by - a. Low pressure of CO b. High pressure of CO c. Not affected by CO pressure - d. None of the above - a. +1 b. +2 c. +3 6. Oxidation state of the metal of the catalyst involved in Monsanto Acetic Acid process d. None of the above - 7. The co-catalyst for Wacker process is - a. Cu2Cl2 b. CuCl₂ c. Both of the above - d. None of the above - A true statement about base hydrolysis of [Co(NH₃)₅Cl]²⁺ - a. It is a first order reaction - b. The rate determining step involves the dissociation of chloride in [Co(NH₃)₄(NH₂)Cl]+ - c. The rate is independent of the concentration of the base - d. The rate determining step involves the abstraction of a proton from [Co(NH₃)₅Cl]²⁺ USTM/COE/R-01 | 9. | The major product formed a. 2-methyl butanal c. Pentanal | by hydroformy | lation of 1-butene b. Pentanol d. None of the abov | ve | |-----|--|---|---|--| | 10. | 1,2 insertion reaction - Takes place with change state of the metal. | in oxidation | b. Is reverse of beta | a-hydride elimination. | | | c. Is migratory elimination | 1. | d. None of the above | ve. | | 11. | The Magic number for the sp | pecies [Ni ₂ Cp ₃]+ | | | | | a. 30 b. 34 | | c. 42 | d. 36 | | 12. | The number of unpaired electrical a. 1 b. 3 | | spound $Mn(C_5H_5)_2$ is c. 2 | d. 5 | | 13. | The stronger M-C bond a. Increases the tendency of b. Neither increases nor de c. Decreases the tendency of d. None of the above. | f CO to leave the | e metal ion.
Jency of CO to leave t | | | 14. | The reactivity of ferrocene ri
a. Benzene
c. thiophene and phenol | ing is similar to | that of b. Naphathalene d. None of the above | ve | | 15. | Identify the first -row transit
C ₅ H ₅)M(CO) ₃] ₂ , where M is-
a. Fe b. Co | | | | | | Base hydrolysis of [CoCle [Co(CN) ₆] ³⁻ is of first order. of the cobalt complex. This and the cobalt complex is a complex of the cobalt complex. This is a complex is a complex of the color of the cobalt complex is of the complex of the color | The rates depermay be due to ton in U) ₆] ³⁻ case of | b. S _N 1CB mechanism [CoCl(NH ₃) ₅] ²⁺ or d. S _N 1CB mechanism complexes | y on the concentration
m in the case of
nly
m in both the | | | The reactions of benzene a ligand it undergoes - a. Free radical reaction c. Redox reactions The associatively activated ligand is feasible because - Linear NO ligand switch NO. | d substitution e | b. Nucleophilic sub
d. None of the above
even in 18 electron of
b. Angular NO liga
NO. | ostitution
ve.
complexes with NO
and switches to linear | | 19 | It becomes 20-electron sy In which of the following cor | | d. None of the abo | | | | a. Co ₄ (CO) ₁₂
c. Ir ₄ (CO) ₁₂ | | b. Rh ₄ (CO) ₁₂
d. H ₄ Re ₄ (CO) ₁₂ | | | 20. | The species {Cp ₂ TiCl ₂ } can
a. Lewis base
c. Bronsted acid | behave as- | b. Lewis Acid
d. Bronsted base | | | | | [2] | _ | USTM/COE/R-01 | ## PART-B : Descriptive Time: 2 hrs. 30 mins. Marks: 50 ## [Answer question no.1 & any four (4) from the rest] | a. What are the three strategies adopted for the synthesis of Transition Metal Alkyls? | 3 | |--|--| | b. What is Tolman Cone Angle? How does it influence the dissociative mechanism? | 3 | | c. Explain the effect of charge on the substrate during the aquation of octahedral complexes. | 2 | | d. Write the name and formula of the organometallic catalyst used widely for polymerization reaction. What is asymmetric oxidation? | 2 | | a. Describe one synthesis of Fisher and Schrock type of Metal carbene and describe the bonding in each of the Metal-carbene complex. | 5 | | b. Describe the characterization of the compound $(\eta^1-C_5H_5)(\eta^5-C_5H_5)$ Fe(CO) ₂ with the help of ¹ HNMR spectra. | 5 | | a. Describe the Bonding in Metal-Olefin complex. Draw the structure of $Fe(CO)_4(C_2H_4)$. | 5 | | b. Arrange the following compounds in decreasing order of relative rate of hydrogenation using wilkinson's catalyst and explain. cyclohexene, cis-2-butene, trans-2-butene, 2,3-dimethyl-2-butene. | 5 | | a. Give an account of the carbonylate anion as the nucleophile. | 3 | | b. What is alkene metathesis? Outline the key steps in this reaction. | 3 | | c. What is Grubbs Catalyst? Mention its role. | 4 | | a. What is oxidative addition? How does it differ from reductive elimination? | 4 | | b.Give a brief account of the beta-hydride elimination. | 3 | | c. Discuss the conditions under which benzene undergoes nucleophilic substitution? | 3 | | | b. What is Tolman Cone Angle? How does it influence the dissociative mechanism? c. Explain the effect of charge on the substrate during the aquation of octahedral complexes. d. Write the name and formula of the organometallic catalyst used widely for polymerization reaction. What is asymmetric oxidation? a. Describe one synthesis of Fisher and Schrock type of Metal carbene and describe the bonding in each of the Metal-carbene complex. b. Describe the characterization of the compound (η¹-C₃H₃)(η⁵-C₃H₃)Fe(CO)₂ with the help of ¹HNMR spectra. a. Describe the Bonding in Metal-Olefin complex. Draw the structure of Fe(CO)₄(C₂H₄). b. Arrange the following compounds in decreasing order of relative rate of hydrogenation using wilkinson's catalyst and explain. cyclohexene, cis-2-butene, trans-2-butene, 2,3-dimethyl-2-butene. a. Give an account of the carbonylate anion as the nucleophile. b. What is alkene metathesis? Outline the key steps in this reaction. c. What is Grubbs Catalyst? Mention its role. a. What is oxidative addition? How does it differ from reductive elimination? b. Give a brief account of the beta-hydride elimination. c. Discuss the conditions under which benzene undergoes nucleophilic | | 6. | a. Why the rate of aquation of trans [Co(en) ₂ Cl(OH)] ⁺ is faster than that of [Co(en) ₂ NH ₃ Cl] ²⁺ ? Explain. | 5 | |----|---|---| | | b. Explain the two mechanisms to explain base hydrolysis of octahedral ammine complexes. | 5 | | 7. | a. Define annation reaction. Write the mechanism by considering steady state principle. | 5 | | | b. What are the conditions of inner sphere mechanism? Explain the mechanism using one chemical reaction. | 5 | | 8. | a. Describe Monsanto acetic acid catalytic cycle mentioning all the steps and showing oxidation states of metal center of all of the species involved in the cycle. | 5 | | | b. Write three reactions and their names for C-C bond formation using metal catalyst. Show the general catalytic cycle for these reactions. | 5 | == *** = =