A

M.Sc. CHEMISTRY FIRST SEMESTER QUANTUM CHEMISTRY-I

MSC - 104 IDMn [USE OMR SHEET FOR OBJECTIVE PART]

Full Marks: 35

Marks: 10

Duration: 1.30 hrs.

Objective)

Choose the correct answer from the following:

1X10 = 10

- 1. The acceptable wavefunction is
 - a. Ψ=sin x
 - c. Ψ=x

Time: 15 min.

- b. Ψ=tan x
- d. Ψ=cosec x
- 2. The phase velocity of a particle moving with a velocity v is

- $d.\frac{v}{a}$
- 3. The de-broglie wavelength of a paticle of mass 'm' and kinetic energy E_k is
 - a. 2mEr

- b. $\frac{h}{2m\sqrt{E_k}}$ d. $\frac{h}{\sqrt{mE_k}}$
- 4. Which of the following is an eigenvalue equation of operator $\hat{\lambda}$ and eigenvalue λ ?
 - a. $\lambda \Psi = \lambda \Phi$

b. $\hat{\lambda}\Psi = \frac{1}{2}\Phi$

c. $\hat{\lambda}\Psi = \frac{1}{\lambda}\Psi$

- $d. \hat{\lambda} \Psi = \lambda \Psi$
- 5. Which of the following is correct?
 - a. $\widehat{x}\widehat{p_x} \widehat{p_x}\widehat{x} = \frac{\hbar}{i}$
 - c. $\hat{x}\widehat{p_x} \widehat{p_x}\hat{x} = -\frac{\hbar}{i}$

- b. $\widehat{x}\widehat{p_x} \widehat{p_x}\widehat{x} = \frac{h}{i}$
- $\mathrm{d.}\,\widehat{x}\,\widehat{p_x} \widehat{p_x}\widehat{x} = -\frac{h}{i}$
- 6. The normalization constant for a particle in 1D box in between length 0 to 1 with wavefunction $\Psi = \sin\left(\frac{m\pi x}{i}\right)$ is

- b. $\sqrt{\frac{2l}{x}}$

- 7. The Hamiltonian for a rigid rotor is giv[1] by
 - a. 0

- c. $\frac{I^2}{2L}$ d. $\frac{2L}{I^2}$ 8. The value of Hermite polynomial $H_1(\xi)$ is given by

b. $4\xi^2 - 2$ d. 0

- c. 2ξ
- 9. If $\phi = Ae^{im\phi}$, then value of A after normalization is

- 10. The degeneracy of the n=2 level for a three-dimensional isotropic oscillator is___.

c. 9

d. 2

Descriptive

Time: 1 hrs. 15 mins. Marks: 25

[Answer question no.1 & any two (2) from the rest]

- 1. a.Calculate the average value of the position (x) for a particle in a box of length 'a'.
 - b. What is quantum tunnelling effect?
- 2. a. State the postulates of quantum mechanics. 5+5=10
 - **b.**Define Hermitian operator and prove that the eigenvalue of Hermitian operator is real.
- 3. a. Starting from the definition of \overline{L}_+ and \overline{L}_- find the value of $[\overline{L}_+, \overline{L}_-]$ 5+5=10
 - **b.**Prove that eigenfunctions of a Hermitian operator corresponding to different eigenvalues are orthogonal.
- 4. a. What is degeneracy? Give the degeneracy of a 3D box with energy $E = \frac{27 \text{ h}^2 \pi^2}{2 \text{ma}^2}$
 - b. Derive and solve the Schrodinger wave equation for rigid rotor
- a. Derive and solve the Schrodinger wave equation for a particle in a ring.
 - b.The lowest energy of a quantum mechanical one-dimensional simple harmonic oscillator is 300 cm⁻¹. What is the energy (in cm⁻¹) of the next higher level?

== *** = =

USTM/COE/R-01