REV-01 MSC/01/05 M.Sc. CHEMISTRY SECOND SEMESTER INORGANIC CHEMISTRY II MSC – 201[REPEAT] [USE OMR FOR OBJECTIVE PART] | Duration: 3 hrs. | | Full Marks: 70 | |--|--|--------------------------------| | Time: 30 min. | Dbjective) the following: | Marks : 20
1 X 20=20 | | The point group of the trigonalplanar a. C_{2v} and C_{2v} c. C_s and C_{2v} | molecule of formula [ML ₂ L'] an b. C_{2v} and C_{s} d. C_{s} and C_{s} | d [MLL'L"] is - | | The Order of Tetrahedral (T_d) and Oct a. 24 and 24 c. 24 and 48 | tahedral (Oh) point group is resp
b. 48 and 48
d. 48 and 24 | ectively- | | 3. The sum of the diagonal elements of ta. 1c. 3 | he matrix of identity operation is
b. 2
d. 4 | s | | In a Cis-[PtCl₂(PPh₃)₂] compound, the vibrations respectively are - a. 2 and 2 I and 2 | number of IR active stretching I b. 2 and 1 d. 1 and 1 | Pt—CI and Pt -P | | 5. The Tetrahedral hybridization may bea. One s- and two p-orbitalsc. One s- and three d-orbitals | e formed by hybridization of
b. One d- and two p- orbit
d. One s- and one d- and t | | | 6. The metal-dinitrogen bond is weaker a CO is a better sigma-donor and a better pi-acceptor. c CO is a better pi -donor and pi-acceptor. | as compared to metal-carbonyl l
b CO is better pi-donor a
d None of the above. | | | The first well characterized example of of Zeises salt Zeigler Natta catalyst | of a bent nitrosyl ligand was fou b Vaska's complex d None of the above. | nd in a derivative | | 8. Polyoxo metalletes can be prepared b
a pH and concentration.c. Temparature | by carefully adjusting b Pressure d None of the above. | | | High coordination number of lanthar Neutralizes Inter ligand repulsion Minimizes inter ligand repulsoin | | | | neighborhood nuclear spin on the molecular system. | b Diamagnetic shift on the neighborhood nuclear spin on the molecular system. | |--|--| | Antiferromagnetic shift on the
neighborhood nuclear spin on the
molecular system, | d None of the above. | | | as
b. Ru(NH ₃) ₂
d. None of the above. | | | b. Equal to zerod. None of the above. | | | is known as b. Ruthenium blue. d. None of the above. | | spontaneous | b. If $\Delta_r G^0 = 0$, then reaction becomes equilibrium d. All of the above | | the difference of two reduction half reaction c. The electrode potential depends on | b. Oxidation does not take place by atmospheric oxidationd. None of the above | | potential diagram | of Latimer diagram b. The most highly oxidized form of the element is on the right d. None of the above | | 17. The standard cell potential can be used to da. The solubility productc. Equilibrium constant | letermine
b. The rate constant
d. All of the above | | Which of the following compounds can be susceptibility measurement using Faraday NiCl₂.6H₂O | | | c. HgCo(NCS) ₄ | d. All of the above | | 19. In presence of magnetic field, a substance sa. Weight of the sample increasesc. No change of weight | shows diamagnetism when b. Weight of the sample decreases d. Not related to weight change | | 121 | USTM/COF/R- | | | | | | | | | | USTM/COF/R-01 20. Spin state crossover happens when - a. Pairing energy is more than crystal field splitting energy - c. Pairing energy is approximately same with crystal field splitting energy - Pairing energy is more than crystal field splitting energy - d. None of the above ## (<u>Descriptive</u>) Time: 2 hrs. 30 mins. Marks: 50 ## [Answer question no.1 & any four (4) from the rest] | 1. | a. Prove that the product of the matrices of C₂ X σ(xz) = σ (yz). b. Account for the strong similarities between the chemical properties of the early d-block transition metallic compounds with those of the f-block elements. c. Write a balanced equation for the oxidation of Fe²⁺ by permanganate ions (MnO₄-) in acid solution. d. Write the advantages and disadvantages of Faraday's method of measurement of magnetic susceptibility. | 2+4+2+
2=10 | |----|--|----------------| | 2. | Find the number of molecular vibrations of water molecule which are IR and Raman active from symmetry considerations. | 10 | | 3. | a. Find the symmetry operations for the BF₃ molecule and systematically determine its point group. b. What is Mutual Exclusion principle for IR and Raman spectra? | 7+3=10 | | 4. | a. What is quadrapole bond? Name the first chemical compound containing quadrapole bond to be synthesized.b. What are dinitrogen complexes? How platinum (dinitrogen) ruthenium (II) could be synthesized?c. How was iridium compound with bent nitrosyl ligand formed? | 3+4+3
=10 | - 5. a. What are Creutz-Taube ion metal complexes? How was the compound isolated? 3+4+3 - **b.** What is tungsten bronze? Outline the properties of sodium tungsten bronze. - c. What is ruthenium red? What are its applications? - 6. a. Use the following standard potentials to calculate the standard potential of copper -zinc cell 2+3+5 =10 $$Cu^{2+}$$ (aq) + 2e- Cu (s), E^{o} (Cu^{2+}/Cu) = +0.34V Zn^{2+} (aq) + 2e- $Zn(s)$, E^{o} (Zn^{2+}/Zn) = -0.76V - **b.** What are disproportionation and comproportionation reaction? Explain with examples. - c. Calculate magnetic moment of Sm and Eu? Why Sm and Eu shows higher magnetic moment than calculated one. - 7. a. Show that Mn (VI) is unstable with respect to disproportionation into Mn(VII) and Mn (II) in acidic aqueous solution. 3+3+4 =10 - b. A part of the Latimer diagram of oxygen is Does hydrogen peroxide have a tendency to disproportionation in acid solution? - c. What are the main key points of Pourbaix diagram? Explain with diagram. - 8. a. [Ni(PPh₃)₂Cl₂] when crystallised from ethanol gives dark blue crystals with a magnetic moment of approximately 3.2 B.M. However, crystallisation from dichloromethane at low temperatures gives a red isomer, which is diamagnetic. Explain this. - **b.** Which d electron configurations show orbital magnetic moment for octahedral and tetrahedral complexes and explain why? == *** = =