REV-01 MSC/66/33/38 2023/06 SET ## M.Sc. CHEMISTRY SECOND SEMESTER INORGANIC CHEMISTRY-II MSC-202 [USE OMR FOR OBJECTIVE PART] Duration: 3 hrs. Full Marks: 70 Objective) Marks: 20 1X20 = 20 Time: 30 min. Choose the correct answer from the following: - 1. Which of the following statement is true about magnetic field intensity: - Magnetic field intensity is the - a. number of lines of force crossing b. per unit volume Magnetic field intensity is the - c. magnetic induction force acting on d. a unit magnetic pole - Magnetic field intensity is the number of lines of force crossing per unit area - Magnetic field intensity is the magnetic moment per unit volume - The experimental magnetic moment of K₃[Fe(CN)₆] is 2.3BM and is attributed to the: - a. Spin only value of a low spin Fe - b. Spin only value of a high spin Fe - c. Low spin with orbital contribution - d. High spin with orbital contribution - 3. Which one of the following shows ∂-bond - a. [Cu(CH3COO)2]2 2H2O - b. MnO₂ c. [Cu(OH)6]2+ - d. K₃[Cu(CN)₆] - Which one of the following is the example of antiferromagnetism: - a. MnO b. MnO c. CrO2 - d. Both (a) and (b) - What will be the consequence of heating a ferromagnetic substance, above its curie temperature? - Ferromagnetic domain becomes - perfectly arranged - Ferromagnetic domain becomes perfectly diamagnetic - Ferromagnetic domain are not influenced perfectly paramagnetic - Ferromagnetic domain becomes - Ground term for d8 (in octahedral ligand field) is: - a. T_{2g} b. A2g c. Tig. - d. A_2 - 7. Which of the following transition will require lowest energy for the electronic transition of [CoCl₄]2-? - a. T_{1g} to T_{2g} b. T₁ to A₂ c. A_2 to T_2 d. None of the above | 8. | For a Nickel (II) complex three bands are observed at energies of 8000, 13200, and 22800 cm $^{-1}$. What is the value of Δ_0 ? | | | | | |---|---|-------|---|--|--| | | a. 8000 cm ⁻¹ | | 13200 cm ⁻¹ | | | | | c. 22800 cm ⁻¹ | d. | None of the above | | | | 9. | In the Tanabe Sugano diagram of d ³ case, two curved lines are observed. Which are those two? | | | | | | | a. A_{2g} and T_{2g} c. T_{1g} and T_{2g} | | A_{2g} and T_{1g}
T_{1g} (F) and T_{1g} (P) | | | | 10. | How Laporte selection rule is relaxed? a. by spin orbit coupling | b. | by vibronic coupling | | | | | c. Both (a) and (b) | d. | This rule cannot be relaxed in any condition | | | | 11. | The electrode potential depends on the pH because: | | | | | | | a. Many redox reactions in aqueous reaction involve transfer of H ⁺ | b. | Redox reactions in aqueous reaction involve transfer of electrons | | | | | c. Both (a) and (b) | d. | None of the above | | | | 12. | Which of the following statement is correctly Cu(I) is not stable in aqueous | ect: | Cu(l) is stable in aqueous solution | | | | | a. solution because it can undergo disproportionation | b. | because it can undergo
disproportionation | | | | | c. Both (a) and (b) | d. | None of the above | | | | 13. | In Pourbaix diagram a horizontal line separates species related by: | | | | | | | a. Proton transfer only | | Electron transfer only | | | | | c. Both proton and electron transfer only | d. | None of the above | | | | 14. | Elements obtained by the chemical oxida | itior | n include: | | | | | a. Heavier halogens | | Sulphur | | | | | c. Noble metals | d. | All of the above | | | | 15. | In oxidation of Fe ²⁺ by permanganate ior electron involved in balanced equation: | ıs (N | MnO_4) in acid solution the number of | | | | | a. +6 | b. | +5 | | | | | c. +4 | d. | +3 | | | | 16. The ligand that support quadruple bonds are | | | | | | | | a. pi-donor but not pi acceptor | | sigma-donor but not sigma acceptor | | | | | c. sigma acceptor but not pi donor | | none of the above | | | | 17. | Polyoxometallate anion can be prepared by carefully adjusting | | | | | | | a. pH and concentration | | pressure | | | | | c. temperature | d. | none of the above | | | | | | | | | | 121 any 18. Charge-transfer spectra originates from a redistribution of electronic density b. within and outside the molecule a. within a molecule d. none of the above c. only in the exterior 19. The characteristics of a mixed valence complex is that the ion strongly absorbs in the b. near infrared region a. mid infrared region d. none of the above c. far infrared region 20. The Uranyl ion is strongly fluorescent with strong emission between 500-550 nm due to b. excitation with IR radiation a. excitation with UV radiation c. excitation with gamma radiation d. none of the above **Descriptive** Time: 2 hrs. 30 mins. Marks: 50 [Answer question no.1 & any four (4) from the rest [a. A compound of metal ion M^{x+} (Z=24) has a spin magnetic mo-2+3+2+3 ment of √15 BM. Identify the name of the metal and calculate =10 the number of unpaired electron. b. State Laporte and Spin selection rule for electronic transition of metal complexes. c. Define disproportionation reaction with example. d. Why there is strong similarities between the chemical properties of the early d-block Organometallic compounds and those of the f-block elements a. Define the term magnetic susceptibility? 1+2+3+4 b. Why magnetic susceptibility for diamagnetic substance is =10negative? c. Write two advantage and disadvantage of Faraday's method? d. Calculate the magnetic moment of the following compound; (i) [Fe(H₂O)₅(NO)]² (ii) [Cr(H₂O)₆]3+ [3] 3. a. Classify the following configurations as A, E or T in complexes having octahedral symmetry. Some of these configurations (iv) K₄[Mn(CN)₆] 2+6+2 USTM/COF/R-01 =10 (iii) VOSO₄ represent excited states. | | (i) t_{2g}⁴e_g² (ii) t_{2g}⁶ (iii) t_{2g}³e_g³ (iv) t_{2g}³ b. Draw all Orgel's diagrams. c. What are the differences between Orgel and Tanabe-Sugano Diagram? | | |----|---|--------------------| | 4. | a. Explain a Pourbaix diagram for some important naturally occurring aqua species of iron.b. What is called chemical oxidation? Discuss Claus process with chemical reaction. | 5+5=10 | | 5. | a. Account for the electronic spectra of early actinoids.b. Explain the reasons for the uniformity across f-block elements.c. What is Creutz-Taube ion metal complex? How was the complex isolated?d. What is Ruthenium Red? What are its applications? | 2+2+3+3
=10 | | 6. | Answer the following: a. Write a short note on: (i) Temperature Independent Paramagnetism and (ii) Diamagnetic Correction. | 3+2+3+2
=10 | | | b. Show that Mn(VI) is unstable with respect to disproportionation into Mn(VII) and Mn(II) in acidic aqueous solution. c. Write the key points for construction of Latimer diagram and show the Latimer diagram for Chlorine in acid solution. | | | 7. | a. Define the term spin cross over? b. In octahedral geometry, which one of the following electronic configuration will have orbital contribution to the magnetic moment: (i) d² and (ii) d7: Explain it in terms of octahedral arrangement and | 1.5+1.5+3
+4=10 | | | ground state term. Write the chemical reaction involved in oxidation by atmospheric oxidation. Draw Tanabe Sugano diagrams for d² and d³ electronic configuration. | | | 8. | a. How many transitions do you expect for [V(H₂O)₆]³⁺ in electronic spectra? Specify those transitions. b. What is 'Lanthanide contraction? What are its causes and impact on solubilities of their ions? c. Enumerate the effects of Lanthanide contraction on the d-block elements | 3+5+3
=10 | | | = = *** = = | |