SET

B.Sc. CHEMISTRY SECOND SEMESTER PHYSICAL CHEMISTRY II BSC - 202 [REPEAT]

[USE OMR FOR OBJECTIVE PART]

A

Full Marks: 70

Duration: 3 hrs.

(Objective)

Marks: 20

Time: 30 min.

Choose the correct answer from the following:

1X20=20

- 1. An intensive property does not depend upon
 - a. Nature of the substance
 - c. External temperature
- b. Quantity of matter
- d. Atmospheric pressure
- 2. The enthalpy change, ΔH of a process is given by the relation

a.
$$\Delta H = \Delta E + \Delta nRT$$

b.
$$\Delta H = \Delta E + p \Delta v$$

c.
$$\Delta H = \Delta E + W$$

3. For an adiabatic process, according to the first law of thermodynamics is

a.
$$\Delta E = -w$$

b.
$$\Delta E = w$$

c.
$$\Delta E = q - w$$

- d. None of these
- 4. By convention, the standard heat of formation of all elements is assumed to be
 - a. Zero

b. negative

c. Positive

- d. Infinity
- 5. The heat of neutralization of a strong acid and a strong base is always
 - a. Zero

b. constant

c. Positive

- d. Changing
- 6. AHo represent the enthalpy change
 - a. At 0° C and 1 atm pressure
- b. At 0 k and 1 atm pressure
- c. At 25 K and 1 atm pressure
- For a spontaneous process
 a. ΔG > 0
 - c. $\Delta G = 0$

- b. AG < 0
- d. None of these

d. None of these

- 8. In a process $\Delta H = 100 \, kj$ and $\Delta S = 100 \, JK^{-1}$ at 400 K. The value of ΔG will be
 - a. Zero

b. 100 kJ

c. 50 kJ

d. 60 kJ

9.	The correct relation of $\left(\frac{1}{\partial F}\right)_T$ is		
	a. $\left(\frac{\partial S}{\partial V}\right)_{T}$	b. $\left(\frac{\partial V}{\partial S}\right)_p$	
	$c \left(\frac{\partial V}{\partial T}\right)_{p}$	None of these d.	
10.	Which of the following is true for a spona. $\Delta G = 0$ c. $\Delta G = -7.5$ kJ mol ⁻¹	taneous process b. $\Delta G = 7.5 \text{ kJ mol}^{-1}$ d. $\Delta G = 75 \text{ kJ mol}^{-1}$	
11.	For an exothermic reaction, increase in to a. Forward reaction Both forward and backward reaction c.	 b. Backward reaction d. None of the above 	
12.	Choose the correct one a. $K_p = K_c (RT)^{\Delta n}$ c. $K_p = K_c / (RT)^{\Delta n}$	b. $K_p = K_c (RT)^{-\Delta n}$ d. $K_p = K_c / RT$	
	Unit of equilibrium constant for the reacti $H_2(g) + I_2(g) = 2HI(g)$ is a. No unit	b. Mol dm-3	
	c. dm ³ Mol ⁻¹	d. None of these	
14. I	For an equilibrium reaction, $K_p = K_c = K_x$ a. $\Delta n = 1$ c. $\Delta n > 1$	when b. $\Delta n < 1$ d. $\Delta n = 0$	
15.	Chemical potential is a. $(\delta G/\delta P)_{v,n1,n2,,nj}$ c. $(\delta G/\delta T)_{P,n1,n2,,nj}$	b. $(\delta G/\delta P)_{T,n1,n2,,nj}$ d. $(\delta G/\delta n_i)_{T,P,n1,n2,,nj}$	
16. 0.212 g of Na ₂ CO ₃ with molar mass 106 is dissolved in 250 mL of a solution. The molarity of Na ₂ CO ₃ in the solution is			
	a. 0.01 <i>M</i> c. 0.005 <i>M</i>	b. 0.008 M d. 0.002 M	
17. A solution contains 50% water and 50% ethanol by mass. The mole fraction of water in the solution is			
	a. 0.28 c. 0.72	b. 0.56 d. 0.44	
18.	1 N Na ₂ CO ₃ solution means a solution co One gram equivalent of 'Na ₂ CO ₃ per a. litre of the solution c. 106 g of Na ₂ CO ₃ per litre of the solution	b. Two gram equivalents of Na ₂ CO ₃ per litre of the solution d. One gram equivalent of Na ₂ CO ₃ per kg of the solution	
		21	

- 19. The relative lowering of vapour pressure of a solution containing a non-volatile solute is equal to the _____ of the solute in the solution. b. Normality
 - a. Molarity

c. Molality

- d. Mole fraction
- 20. Which of the following is not a colligative property
 - a. Surface tension
- b. Osmotic pressure
- c. Relative lowering of vapour pressure
- d. Elevation of boiling point

(<u>Descriptive</u>)

Time: 2 hrs. 30 mins.

meanings.

 $C(s) + O_2(g) \rightarrow CO_2(g);$

Marks: 50

5+5=10

10

10

HETMICOET OF

[Answer question no.1 & any four (4) from the rest]

- a. State Le-Chatelier's principle. With the help of this principle what would be the favourable condition for formation of ammonia
 - $N_2(g) + H_2(g) = 2NH_3(g), \Delta H = -92.35 \text{ Kj}$ b. What is a spontaneous reaction? Derive the condition of spontaneity and equilibrium in terms of Gibb's free energy change and entropy
- change. a. State Euler's reciprocity relation. Show that the pressure is a state function of a gas obeying $\left(p + \frac{a}{v^2}\right)V = RT$. The symbols have their usual
 - b. Derive an expression for the work done by a gas in isothermal reversible expansion of an ideal gas.
- a. Derive Kirchoff's equation thermodynamically. b. Calculate the enthalpy of formation of ethane from the following data:
- a. Derive an expression for Van't Hoff equation. 6+4=10 b. Determine the relation between Kp and Kc.

 $\Delta H = -393.4 \text{ kj}$

What do you mean by partial molar quantities. What is chemical potential. 2+2+6 =10Derive an expression for Gibb's Duhem equation.

6.	a. For a homogeneous gaseous reaction $2AB_2(g) = 2AB(g) + B_2(g)$, derive an expression for K_p if the dedissociation is α and total pressure is P .	5+5=10 egree of
	 What is Joule-Thomson effect? Prove that Joule-Thomson expertakes place at constant enthalpy. 	riment
7.	 a. Calculate the standard free energy change (ΔG°) of the following reaction and say whether it is feasible at standard state or not. ½ H₂ (g) + ½ l₂ (g) ⇒ HI (g); Given ΔH° = 25.95 kJ, S°_{HI}, S°_{H2} and 206.27, 130.60, 116.73 JK-¹mol-¹ at 25 °C. 	
	b. What is Gibb's free energy? Find the variation of Gibb's free energy with temperature and pressure?	ergy
8.	 a. State and explain Raoult's law. b. What are the factors that affect the solubility of a gas in a liquid c. Give two limitations of Henry's law. 	? 4+3+3 =10

--***--