REV-01 BBT/02/06 B.Sc. BIOTECHNOLOGY FOURTH SEMESTER (SPECIAL REPEAT) CHEMISTRY-II BBT-403 [USE OMR SHEET FOR OBJECTIVE PART] Duration: 3 hrs. Objective) 20 Full Marks: 70 2023/08 SET | Tin | ne: 30 mins. | | -) | Marks: 20 | |-----|---|--------|---|---------------------| | Ch | oose the correct ansicer from the follo | wir | ıg: | 1×20=20 | | 1. | What type of intermolecular forces are due and their induced temporary dipoles? | to t | he attraction between tempora | ry dipoles | | | a. Metallic bondc. Hydrogen bond | | London dispersion lonic bond | | | 2. | Paramagnetism is due to: a. Paired electrons c. Absence of magnetic field | | Unpaired electrons
All of the above | | | 3. | Which one of the following does not have la. Ice c. Hydrocarbon | b. | rogen bonding?
Ethanol
Water | | | 4. | The coordination number of the metal in the a. 2 c. 4 | b. | omplex [Cu(NH2CH2CH2NH2)2
3
6 | } ²⁺ is: | | 5. | The oxidation state of the Chromium in the a. 3-c. 6- | b. | nplex K ₃ [Cr(CN) ₀] is:
3+
6+ | | | 6. | The magnetic moment of the low spin com a. 0 c. 2.83BM | b. | [Co(NH ₃) ₆] ³⁺ ion is:
1.73BM
3.9BM | | | 7. | The Effective Atomic Number of the metal a. 32 c. 35 | b. | ne complex [Cr(NH ₃) ₆] ³⁺ is: 33 36 | | | 8. | The number of Optical isomer possible for a. 0 c. 2 | the b. | 1 | s: | | 9. | The CFSE of Octahedral complex of d^3 and a. $4/5\Delta o$ and $6/5\Delta o$ c. $6/5\Delta o$ and $4/5\Delta o$ | b. | igh spin complex is respective
4/5∆o and 4/5∆o
6/5∆o and 6/5∆o | ly: | | 10. | The hybridization required to explain the s a. Sp^{2-} c. d^2sp^3 | b. | ture of tetrahedral structure is:
dsp²
sp³ | | | Which of the following is paramagneti a. O₂ c. O₂²- | ic in nature? b. N_2 d. All of the above | |--|---| | Which of the following is more electrona. FBr | negative elements? b. CI d. N | | Which of the following molecule is linea. CO₂c. SF₂ | ear? b. H ₂ O d. N ₂ O | | 4. According to MO theory for the specie a. Bond order is zero and it is diamagnetic c. Bond order is two and it is paramagnetic | b. Bond order is two and it is diamagne d. Bond order is zero and it is paramagnetic | | 5. Amongst of the following species the oration a. O_2 c. O_2 | one having the highest bond strength is: b. $O_2^{2^+}$ d. $O_2^{2^-}$ | | 6. Which ionic solid is expected to have the a. NaClc. CaF₂ | he highest melting point? b. KBr d. CaO | | 7. Which example below exhibits the larg a. Angle H-O-H in H₂O c. Angle F-B-F in BF₃ | est bond angle? b. Angle F-Be-F in BeF ₂ d. Angle CI-C-CI in CHCl ₃ | | 8. Atomic radii of the 3d series show proga. Shielding effect decreasesc. Nuclear charge increases | gressive decrease because: b. Shielding effect increases d. Both a and c | | 9. Which of the following hydrides whicha. NH₃c. SbH₃ | n has the lowest boiling point? b. PH ₃ d. AsH ₃ | | O. Aluminium oxide (Al₂O₃) is a:a. Basic oxidec. Neutral oxide | b. Amphoteric oxided. Amphoteric oxide | | - | | 2 USTM/COE/R-01 ## $\left(\underline{\text{Descriptive}} \right)$ | Time: 2 hr. 30 mins. | | | | | | | | |----------------------|---|----------|--|--|--|--|--| | | [Answer question no.1 & any four (4) from the rest] | | | | | | | | 1. | a) What do you mean by the Jahn-Teller effect?b) State the rules of Nomenclature of Complexes. | 5+5=10 | | | | | | | 2. | Explain the Crystal Field Theory for octahedral complexes, showing splitting of orbital Energy and the factors that determines this splitting. | 10 | | | | | | | 3. | a) Explain the molecular orbital energy level diagram of CO and NO molecules.b) Define hydrogen bonding. What are the classification hydrogen bondings? Discuss with examples. | 5+5=10 | | | | | | | 4. | a) Which one among ammonia (NH₃) and carbontetrachloride (CCl₄) will dissolve in water and why?b) Give an example of a volatile organic mixture in which the hydrogen bonded to a carbon atom acts as H-bond donor and explain the reason behind this behaviour. | 5+5=10 | | | | | | | 5. | a) Explain the molecular orbital energy level diagram of oxygen and nitrogen molecule. b) Explain briefly why copper (Cu) does not react with acids. c) Draw the structure of possible isomer for the complex [Co(en)₂Cl₂]. | 4+3+3=10 | | | | | | | 6. | a) What are the postulates of VSEPR theory? b) Explain the hybridization of SF₆ and PCl₅ molecules on the basis of Valance bond theory. | 5+5=1() | | | | | | | 7. | a) Iron (Fe) reacts with perchloric acid (HClO₄). Write down briefly the redox chemical changes occurring during this reaction and determine the thermodynamically feasible oxidation state of Fe. b) Why zinc (Zn) is colorless? Explain with proper diagram. | 6+4=10 | | | | | | | 8. | Explain the possible structure of the complex [Cr(NH ₃) ₆]Cl ₃ and [Cu(NH ₃) ₄]SO ₄ with Valence Bond Theory, stating their magnetic properties. | 10 | | | | | | == *** = =