B.Sc. BIOTECHNOLOGY FOURTH SEMESTER (REPEAT) CHEMISTRY-II

BBT-403
[USE OMR SHEET FOR OBJECTIVE PART]

Duration: 3 hrs.

Time: 30 mins.

Objective)

Choose the correct answer from the following:

b. Dipole-induced dipole interaction

2023/06

SET

Full Marks: 70

Marks: 20

 $1 \times 20 = 20$

Keesom interaction is:
 Dipole dipole inter-

a. Dipole-dipole interaction

c. Induced dipole-induced dipole

interaction

2. Solubility of ethanol is highest in:

a. Propanolc. Octane

b. Propane

d. Oil

3. Which is true about Latimer diagram?

a. Shows relative stability of different oxidation states

c. Both a and b

 Shows standard reduction potential connecting various oxidation states of an element

d. None of the above

d. None of the above

4. Which statement is not true about hydrogen bond?

a. It is special type of dipole dipole interaction

c. It increases boiling point of polar protic compounds

b. It forms between hydrogen and highly electropositive elements

d. None of the above

5. Transition metal complexes are colored due to:

a. Variable oxidation state

 Splitting of d orbitals and transition of electrons between two different energy states b. Presence of partially filled d orbitald. None of the above

6. Boiling point of a compound is related to:

a. Vanderwall's force

c. Both a and b

b. Hydrogen bondd. None of the above

7. Find the paramagnetic species.

a. CN-

b. NO

c. CO

d. O2-

8. Find the diamagnetic species.

a. H₂

b. H₂-

c. He2*

d. H₂*

9.	The hybridization of XeF ₄ is: a. sp ³ d c. sp ³ d ²		sp^3 sp^2
10.	Find the molecule having the highest bond of a. O_2^+ c. O_2^{2-}	b.	O ₂ - O ₂
11.	The formal charge of O ₃ molecule is: a1,+1,-1 c. +1,+1,-1		-1,0,+1 None of the above
12.	Which of the following species are isoelctrona. N ₂ , CO, NO ⁺ c. O ₂ , NO, CO ₂	b.	O ₂ , N ₂ , CO All of the above
13.	The geometry of BF ₃ molecule is: a. Trigonal planar c. Square planar		Tetrahedral All of the above
14.	[Ni(CN) ₄] ²⁻ has which geometry? a. Square planer c. Tetrahedral		Trigonal bipyramid None of the above
15.	Fe atom in [Fe(CN) ₆] ⁴⁻ is: a. dsp ² hybridized c. sp ³ d ² hybridized		d ² sp ³ hybridized None of the above
16.	[$Co(NH_3)_6$][$Cr(CN)_6$] and [$Co(CN)_6$][$Cr(NH_3)_6$]	b.	refers to: Coordination Isomerism None of the above
17.	Trans-isomers are optically: a. Active c. Opaque		Inactive None of the above
18.	[Fe(CN) ₆] ⁴⁻ is a low spin complex, because C a. Strong field ligand c. Ferromangetic species	b.	is a: Weak field ligand None of the above
19.	Square planer complex is a s special case of: a. Tetragonal bipyramidal complex c. Octahedral complex		Tetrahedral complex None of the above
20.	Greater the CFSE of the complex, a. Smaller is the stability of the complex c. It becomes optically active		Greater is the stability of the complex None of the above

2

USTM/COE/R-01

$\left(\underline{\text{Descriptive}} \right)$

Time: 2 hr. 30 mins. Marks: 50

[Answer question no.1 & any four (4) from the rest]

1.	a) Discuss all types of Vander wall's forces seen in compounds	4
	showing examples. b) Write the postulates of VSEPR theory. c) Name the following according to IUPAC system. (i) K ₄ [Fe(CN) ₆] (ii) K[Ag(CN) ₂] (iii) [Cu(NH ₃) ₄]SO ₄	3 3
2.	a) Explain the significance and utility of Latimer diagram of an element in different oxidation states.b) Explain the origin of color observed in transition metal compounds, considering the crystal field theory.	5+5=10
3.	 a) How do intermolecular forces affect solubility? b) Why propane has boiling point of -42 °C but ethanol has 78 °C? c) Discuss how shape of molecules and number of electrons held by molecules affect Vander wall's force. 	3+3+4=10
4.	a) Explain the trend of boiling points of H ₂ O, H ₂ S, H ₂ Se and H ₂ Te.	3
	b) Calculate the formal charge of NO ₂ molecule.	3 4
	c) When does strong distortion occur in an octahedral complex? What are its impacts?	4
5.	 a) Explain the molecular orbital energy level diagram of O₂ and O₂ ions and calculate bond order, magnetic moment for each ion. b) Explain the structure of SF₆ molecule using hybridisation. 	6+4=10
6.	 a) Why He₂ molecule does not exist? b) Define hydrogen bonding? Why O -nitro phenol is more volatile than p-nitro phenol? c) Calculate the bond order of N₂⁺ ion using molecular orbital energy level diagram. d) Mention the hybridization of the following molecules/ions. (i) CO₂ (ii) CH₃⁺ (iii) CH₃⁻ (iv) PCl₅ 	2+3+3+2=10
7.	a) Why does Cu (II) form Square planer complexes rather than tetrahedral complexes?b) Give a brief account of the splitting of d-orbitals in an octahedral field.	4+6=10
8.	 a) Draw the possible geometrical isomers of [Co(en)₂Cl₂]. Which one of them is optically active and why? b) Give a brief account of the optical activity of Trioxalato Chromate (III) ion. 	6+4=10