REV-01 BMB/19/24 ## **B.Sc. MICROBIOLOGY FOURTH SEMESTER CHEMISTRY-II** BMB-405 [USE OMR SHEET FOR OBJECTIVE PART] Duration: 3 hrs. Time: 30 mins. **Objective** Full Marks: 70 Marks: 20 Choose the correct answer from the following: $1 \times 20 = 20$ 2023/06 SET 1. Keesom interaction is: a. Dipole-dipole interaction c. Induced dipole-induced dipole interaction b. Dipole-induced dipole interaction d. None of the above 2. Solubility of ethanol is highest in: a. Propanol c. Octane 3. Which is true about Latimer diagram? a. Shows relative stability of different oxidation states c. Both a and b b. Propane d. Oil b. Shows standard reduction potential connecting various oxidation states of an element d. None of the above 4. Which statement is not true about hydrogen bond? a. It is special type of dipole dipole interaction c. It increases boiling point of polar b. It forms between hydrogen and highly electropositive elements protic compounds d. None of the above 5. Transition metal complexes are colored due to: a. Variable oxidation state b. Presence of partially filled d orbital c. Splitting of d orbitals and transition of electrons between two different energy states d. None of the above 6. Boiling point of a compound is related to: a. Vanderwall's force b. Hydrogen bond c. Both a and b d. None of the above Find the paramagnetic species. a. CNc. CO b. NO+ d. O₂- Find the diamagnetic species. a. H_2 b. H₂d. H₂+ c. He2+ USTM/COE/R-01 - 9. The hybridization of XeF4 is: a. sp³d b. sp³ c. sp^3d^2 d. sp² 10. Find the molecule having the highest bond order. c. O₂2d. O₂ 11. The formal charge of O₃ molecule is: a. -1,+1,-1 b. -1,0,+1 c. +1,+1,-1d. None of the above 12. Which of the following species are isoelctronic? a. N₂, CO, NO+ b. O₂, N₂, CO c. O₂, NO, CO₂ d. All of the above 13. The geometry of BF₃ molecule is: a. Trigonal planar b. Tetrahedral c. Square planar d. All of the above 14. [Ni(CN)₄]²⁻ has which geometry? a. Square planer b. Trigonal bipyramid c. Tetrahedral d. None of the above 15. Fe atom in [Fe(CN)₆]⁴ is: a. dsp² hybridized b. d²sp³ hybridized c. sp3d2 hybridized d. None of the above a. Polymerization Isomerism c. Linkage Isomerism - 16. [Co(NH₃)₆][Cr(CN)₆] and [Co(CN)₆][Cr(NH₃)₆] refers to: a. Polymerization Isomerism b. Coordination Isomerism c. Linkage Isomerism d. None of the above 17. Trans-isomers are optically: a. Active b. Inactive c. Opaque d. None of the above 18. [Fe(CN)₆]⁴⁻ is a low spin complex, because CN- is a: a. Strong field ligand c. Ferromangetic species d. None of the above - a. Tetragonal bipyramidal complex c. Octahedral complex d. None of the above 20. Greater the CFSE of the complex, 19. Square planer complex is a s special case of: a. Smaller is the stability of the complexb. Greater is the stability of the complexc. It becomes optically activeb. Greater is the stability of the complexd. None of the above ## (<u>Descriptive</u>) | Time: 2 hr. 30 mins. | | Marks: 50 | |---|--|-----------------| | [Answer question no.1 & any four (4) from the rest] | | | | 1. | a) Discuss all types of Vander wall's forces seen in compounds
showing examples. | 4 | | | b) Write the postulates of VSEPR theory. c) Name the following according to IUPAC system. (i) K ₄ [Fe(CN) ₆] (ii) K[Ag(CN) ₂] (iii) [Cu(NH ₃) ₄]SO ₄ | 3 3 | | 2. | a) Explain the significance and utility of Latimer diagram of an element in different oxidation states.b) Explain the origin of color observed in transition metal compounds, considering the crystal field theory. | 5+5=10 | | 3. | a) How do intermolecular forces affect solubility? b) Why propane has boiling point of -42 °C but ethanol has 78 °C? c) Discuss how shape of molecules and number of electrons held by molecules affect Vander wall's force. | 3+3+4=10 | | 4. | a) Explain the trend of boiling points of H₂O, H₂S, H₂Se and H₂Te. b) Calculate the formal charge of NO₂ molecule. c) When does strong distortion occur in an octahedral complex? What are its impacts? | 3
3
4 | | 5. | a) Explain the molecular orbital energy level diagram of O₂ and O₂ ions and calculate bond order, magnetic moment for each ion. b) Explain the structure of SF₆ molecule using hybridisation. | 6+4=10 | | 6. | a) Why He₂ molecule does not exist? b) Define hydrogen bonding? Why O -nitro phenol is more volatile than p-nitro phenol? c) Calculate the bond order of N₂* ion using molecular orbital energy level diagram. d) Mention the hybridization of the following molecules/ions. (i) CO₂ (ii) CH₃* (iii) CH₃- (iv) PCl₅ | 2+3+3+2=10 | | 7. | a) Why does Cu (II) form Square planer complexes rather than tetrahedral complexes?b) Give a brief account of the splitting of d-orbitals in an octahedral field. | 4+6=10 | | 8. | a) Draw the possible geometrical isomers of [Co(en)₂Cl₂]. Which one of them is optically active and why? b) Give a brief account of the optical activity of Trioxalato Chromate (III) ion. | 6+4=10 | | | | ISTAN COS ID OL |