REV-01 BPH/95/32/37 2023/06

SET B

SECOND SEMESTER **BIOCHEMISTRY** BP-203T

B. PHARM.

[USE OMR SHEET FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 75

(PART-A: Objective)

Time: 30 min.

Choose the correct answer from the following:

Marks: 20

 $1 \times 20 = 20$

- In biosynthesis of proteins the chain terminating codons are
 - a. UAA, UAG and UGA c. GCG, GCA and GCU
- b. UGG, UGU and AGU d. AAU, AAG and GAU
- DNA rich in A-T pairs have
 - a. 2 Hydrogen bonds
- b. 1 Hydrogen bond
- c. 3 Hydrogen bonds
- d. 4 Hydrogen bonds
- The metabolic currency of the cell is known as
 - a. ATP

ADP

- d. UDP
- 4. Histidine is converted to histamine through the process of
 - a. Transamination

- b. Decarboxylation
- c. Oxidative deamination
- d. Urea cycle
- 5. After termination of the synthesis of RNA molecule, the core enzymes separate from the DNA template. The core enzymes then recognize a promoter at which the syn thesis of a new RNA molecule commences, with the assistance of
 - a. Rho (ρ) factor

b. δ factor

c. B factor

- d. o factor
- Purine biosynthesis is inhibited by
 - a. Aminopterin

b. Tetracyclin

d. Chloramphenicol

- c. Methotrexate
- 7. The protein present in hair is a. Keratin

c. Gelatin

- b. Casein d. Elastin
-is known as carrier of kerb's cycle
 - a. Oxalo acetate

b. Ornithine

c. Carnitine

- d. Citric Acid
- The nitrogenous base present in the RNA molecule is
 - a. Thymine

b. Uracil

c. Xanthine

d. Hypoxanthine

 Alpha helix and beta pleated sheet was propo a. Watson and Crick Peter Mitchell 	osed by b. King and Wooten d. Pauling and Corey
11. Which is the following is a saturated fatty aca. Palmitic Acidc. Linoleic Acid	id is b. Oleic Acid d. Erucic Acid
12. The chief protein of cow's milk isa. Albuminc. Casein	b. Vitellind. Livetin
13. Sphingomyelins isa. Phospholipidsc. Alcohols	b. Nitrolipidsd. None of these
14. a-D-glucose + 112^0 $\longrightarrow 52.5^0$ $+ 10^0 \beta$ -D	-glucose for glucose above represents
a. Optical isomerismc. Epimerisation	b. Muta Rotationd. D and L isomerism
15. Sucrose consists ofa. Glucose + glucosec. Glucose + galactose	b. Glucose+ Fructosed. Fructose + galactose
16. Zymogen is aa. Modulatorc. Hormone	b. Enzyme Precursord. Vitamin
17. Km value of enzyme is substrate concentration at	
a. ½ Vmax c. 4 Vmax	b. 2 Vmax d. 1/3 Vmax
18. During glycolysis, Fructose 1, 6 diphosphate isa. Enolasec. Fructokinase	s decomposed by the enzyme b. Aldolase d. Diphosphofructose
19. The degradative Processess are categorized under thea. Catabolismc. Anabolism	e heading of b. Metabolism d. Amphoteric
 20. A nucleoside consists of a. Nitrogenous base c. Purine or pyrimidine base + phosphorous 	 b. Purine or pyrimidine base + sugar d. Purine + pyrimidine base + sugar phosphorous

PART-B: Descriptive

Time: 2 hrs. 30 min.

details.

[Answer any seven (7) questions] 1. Explain the double helical structure of DNA. 5 Give Structure and biological significance of ATP. Define Enthalpy and Gibb's Free Energy. Write the relation between entropy, Enthalpy and Gibb's Free Energy 2+2+1 5 Write in detail about urea cycle. Write a short note on Diabetes Mellitus and Jaundice 2.5+2.5 5 Describe the process of DNA replication. Derive Michaeli's Menten Equation 5 6. 2.5+2.5 Write about formation and utilization of ketone bodies. =5 Define and Classify protein and nucleic acid with example 2.5+2.5 =5 Define and classify Carbohydrates with suitable example in 1+4=5

Marks: 35

PART-C: Long type questions

[Answer any two (2) questions]

1.	Define Glycolysis pathway. Write the steps involved in glycolysis pathway with energetic.	1+8+1 =10
2.	Define Enzyme. Classify enzyme with suitable example according to IUB classification. Write the mechanism of action of enzyme.	1+6+3 =10
3.	Explain the process of ß-Oxidation of fatty acids with energitics. Considering palmitic acid as example.	10