REV-01 BCA/60/70

BACHELOR OF COMPUTER APPLICATION THIRD SEMESTER COMPUTER ORIENTED NUMERICAL METHODS

BCA-304
[USE OMR SHEET FOR OBJECTIVE PART]

Duration: 1hr. 30 mins. Full Marks: 35		
Tir	ne: 15 mins.	<u>ive</u>) Marks: 10
	noose the correct answer from the following:	1X10=10
1.	1 + Δ= a. e c. E	b. E^{-1} d. None of these
2.	1 − ∇= a. e c. E	b. E^{-1} d. None of these
3.	$ \Delta \nabla = a. \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} c. \frac{\Delta}{\nabla} \times \frac{\nabla}{\Delta} $	b. $\frac{\Delta}{v} + \frac{v}{\Delta}$ d. None of these
4.	Δ = a. $E\nabla$ c. Both of a and b	b. ∇Ed. None of these
5.	f(x) is a polynomial of degree n then a. $\Delta^n f(x) = 0$ c. $\Delta^n f(x) = polynomial$	b. $\Delta^n f(x) = \text{polynomial of degree n-1}$ d. $\Delta^n f(x) = constant$
6.	$E^{-2}f(x+h) =$ a. $f(x+h)$ c. $f(x+2h)$	b. $f(x - 2h)$ d. $f(x - h)$
7.	If the data is equally spaced and interpolation then interpolation formula is us a. Newton Backward difference Newton divided differences c.	on is near the beginning of the data ed b. Lagrange's interpolation d. Newton's forward difference
8.	If the data is equally spaced and interpolation is near the end of the data then interpolation formula is used	

USTM/COE/R-01

1

b. Newton divided differences

a. Newton Backward difference

c. Newton divided differences

d. Newton's forward difference

- 9. If the data is unequally spaced and interpolation is near the end of the data then______interpolation formula is used
 a. Newton divided differences
 b. Newton divided differences
 - a. Newton divided differencesc. Both a and b

d. None of these

10.
$$\nabla f(x) =$$

a.
$$f(x+h)-f(x)$$

b.
$$f(x) - f(x - h)$$

c.
$$f(x-h)-f(x)$$

$$d. f(x) - f(x + h)$$

(<u>Descriptive</u>)

Time: 1 hr. 15 mins.

Marks: 25

[Answer question no.1 & any two (2) from the rest]

1. Prove that
$$\Delta \nabla = (E^{\frac{1}{2}} - E^{-\frac{1}{2}})^2 = \Delta - \nabla$$
 5

2. a. Evaluate
$$\Delta tan^{-1}x$$
 [assuming h=1] 5+5=10

Gregory backward formula.

3. a. If
$$f(x) = \frac{5x+12}{x^2+5x+6}$$
, find $\Delta f(x)$, taking interval of difference as unity.

b. Find the third divided difference of
$$f(x) = 1$$
 x with the arguments 1, 3, 4, 73

4. Prove that
$$e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{E e^x}{\Delta^2 e^x}$$

5. Using Lagrange's interpolation formula, Prove that
$$y_0 = \frac{1}{2}(y_1 + y_{-1}) - \frac{1}{8} \left[\frac{1}{2}(y_3 - y_1) - \frac{1}{2}(y_{-1} - y_{-3}) \right]$$