REV-01 BCA/60/70 ## BACHELOR OF COMPUTER APPLICATION THIRD SEMESTER COMPUTER ORIENTED NUMERICAL METHODS BCA-304 [USE OMR SHEET FOR OBJECTIVE PART] | Duration: 1hr. 30 mins. Full Marks: 35 | | | |--|---|---| | Tir | ne: 15 mins. | <u>ive</u>)
Marks: 10 | | | noose the correct answer from the following: | 1X10=10 | | 1. | 1 + Δ= a. e c. E | b. E^{-1} d. None of these | | 2. | 1 − ∇=
a. e
c. E | b. E^{-1} d. None of these | | 3. | $ \Delta \nabla = a. \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta} c. \frac{\Delta}{\nabla} \times \frac{\nabla}{\Delta} $ | b. $\frac{\Delta}{v} + \frac{v}{\Delta}$
d. None of these | | 4. | Δ = a. $E\nabla$ c. Both of a and b | b. ∇Ed. None of these | | 5. | f(x) is a polynomial of degree n then
a. $\Delta^n f(x) = 0$
c. $\Delta^n f(x) = polynomial$ | b. $\Delta^n f(x) = \text{polynomial of degree n-1}$
d. $\Delta^n f(x) = constant$ | | 6. | $E^{-2}f(x+h) =$ a. $f(x+h)$ c. $f(x+2h)$ | b. $f(x - 2h)$
d. $f(x - h)$ | | 7. | If the data is equally spaced and interpolation then interpolation formula is us a. Newton Backward difference Newton divided differences c. | on is near the beginning of the data
ed
b. Lagrange's interpolation
d. Newton's forward difference | | 8. | If the data is equally spaced and interpolation is near the end of the data then interpolation formula is used | | USTM/COE/R-01 1 b. Newton divided differences a. Newton Backward difference c. Newton divided differences d. Newton's forward difference - 9. If the data is unequally spaced and interpolation is near the end of the data then______interpolation formula is used a. Newton divided differences b. Newton divided differences - a. Newton divided differencesc. Both a and b d. None of these 10. $$\nabla f(x) =$$ _____ a. $$f(x+h)-f(x)$$ b. $$f(x) - f(x - h)$$ c. $$f(x-h)-f(x)$$ $$d. f(x) - f(x + h)$$ ## (<u>Descriptive</u>) Time: 1 hr. 15 mins. Marks: 25 [Answer question no.1 & any two (2) from the rest] 1. Prove that $$\Delta \nabla = (E^{\frac{1}{2}} - E^{-\frac{1}{2}})^2 = \Delta - \nabla$$ 5 2. a. Evaluate $$\Delta tan^{-1}x$$ [assuming h=1] 5+5=10 Gregory backward formula. 3. a. If $$f(x) = \frac{5x+12}{x^2+5x+6}$$, find $\Delta f(x)$, taking interval of difference as unity. b. Find the third divided difference of $$f(x) = 1$$ x with the arguments 1, 3, 4, 73 4. Prove that $$e^x = \left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{E e^x}{\Delta^2 e^x}$$ 5. Using Lagrange's interpolation formula, Prove that $$y_0 = \frac{1}{2}(y_1 + y_{-1}) - \frac{1}{8} \left[\frac{1}{2}(y_3 - y_1) - \frac{1}{2}(y_{-1} - y_{-3}) \right]$$