B.Sc. PHYSICS FIFTH SEMESTER QUANTUM MECHANICS & APPLICATIONS

SET

BSP - 501 [USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Full Marks: 70

Time: 30 min.

(Objective)

Marks: 20

Choose the correct answer from the following:

1×20=20

1. The probability density $|\Psi(x,t)|^2$ is defined as

a.
$$\Psi(x,t)\Psi(x,t)$$

$$x, t$$
)

$$\Psi^*(x,t)\Psi(x,t)$$

b.
$$\Psi^*(x,t)\Psi^*(x,t)$$

d. None of these

The operator representation of momentum in quantum mechanics is

$$a - i\hbar \frac{\partial}{\partial x}$$

th
$$\frac{\partial}{\partial x}$$
 d. $-i\frac{\partial}{\partial x}$

3. A wave function has the form, $\psi(x,t) = Ae^{-i\phi t}$ (A, b are real, independent of both xand t). We conclude that

- a. The probability density is zero.
- b. The probability density oscillates
- c. The probability density is a constant over time.
- d. The probability density decays with time.

4. The energy in the nth stationary state in an infinite square well potential varies with

a. 1

b. n

c. $\frac{1}{n^2}$

d. , :

The energy difference between adjacent simple harmonic oscillator (1D) energy levels is

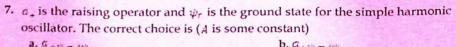
a. hw

c. 3hw

 $\frac{d}{2}h\omega$

The infinite square well potential has the form $V(x) = \begin{cases} 0.1 & \text{if } 0 \le x \le a \\ \infty, \text{ otherwise} \end{cases}$

The probability of finding the particle within the range $-a \le x \le -2a$ is


a. 1

b. 0.5

c. 0.25

d. 0

USTM/COE/R-01

a.
$$\alpha_{+\psi_0=A\psi_0}$$

b. $\alpha_{+\psi_0=A\psi_0}$
c. $\alpha_{+\psi_0=A\psi_0}$
d. $\alpha_{+\psi_0=0}$

a.
$$n$$
 b. $n-1$ c. $n+1$ d. $2n$

9. The solution to the Schrödinger equation for the free particle is given as
$$Ae^{i\left(kx-\frac{\hbar k^2}{2m}\varepsilon\right)}+Be^{i\left(kx+\frac{\hbar k^2}{2m}\varepsilon\right)}$$

Where A, B are some constants and all other symbols have their usual meanings. The first and second terms represent

- a. Left and right traveling waves, respectively
- c. Left traveling waves
- b. Right and left traveling waves, respectively
- d. Right traveling waves

10. For a free particle in quantum mechanics, the group velocity
$$v_{group}$$
 and phase velocity v_{phase} are related as

a.
$$v_{group} = 2v_{phase}$$
 b. $v_{group} = \frac{1}{2}v_{phase}$ c. $v_{group} = v_{phase}$ d. $v_{group} = 3v_{phase}$

a.
$$\frac{9\pi^{2}h^{2}}{2ma^{2}}$$
b. $2\pi^{2}h^{2}$
c. $3\pi^{2}h^{2}$
d. $\pi^{2}h^{2}$

$$2ma^{2}$$

$$9ma^{2}$$

Orbital angular momentum is classically expressed as
$$\vec{L} = \frac{\vec{r} \times \vec{v}}{m} \qquad \qquad \vec{L} = \frac{m}{\vec{v}}$$

$$\vec{L} = m(\vec{r} \times \vec{v}) \qquad \qquad \vec{L} = \frac{\vec{m}}{m}$$

13. The magnitude of the spin magnetic dipole moment is given by

a.
$$\mu_x = \frac{1}{2} \frac{e\hbar}{m}$$
b.
$$\mu_z = \frac{e\hbar}{4\pi m}$$
c.
$$\mu_z = \frac{\sqrt{3}}{2} \frac{e\hbar}{m}$$
d.
$$\mu_z = 0.866\hbar$$

- 14. For L-shell (n=2), the number of possible sets of quantum numbers is
 - a. 2

b. 4

c. 6

- d. 8
- 15. Quantization of orbital angular momentum is represented as
 - a. $L = n\pi\hbar$

b. L = mvr/h

c. L = nh

- $d. L = n\pi/\hbar$
- 16. Which of the following is the expression for the energy of a particle in x-axis of a 3-dimensional potential box
 - a. $E = n_x \pi^2 \hbar^2 / 8ma$
- b. $E = n_x^2 \pi^2 \hbar^2 / 2\alpha$

c. $E = n\pi h/8ma$

- $\mathrm{d}.\,E=n_x^2\pi^2\hbar^2/2ma^2$
- 17. The separation between the Sodium D lines in terms of wavelength is
 - a. $\Delta \lambda = 0.6nm$

b. $\Delta \lambda = 6nm$

 $c. \Delta \lambda = 60nm$

- $d. \Delta \lambda = 600nm$
- 18. The spectral line series of H-atom which fall in visible range of wavelength is
 - a. Pfund

b. Bracket

c. Lyman

- d. Balmer
- 19. The total energy E, contain in the radial wave equation of the H-atom, indicates the electron is bound to the proton, if
 - a. E is positive

b. E is negative

c. E is zero

- d. E is imaginary
- 20. Energy in the first Bohr's orbit of H-atom is
 - a. 7.1 eV

b. 1.13 eV

c. -4.01 eV

d. -13.6 eV

Descriptive

Time: 2 hrs. 30 mins.

Marks:50

[Answer question no.] & any four (4) from the rest [

1. The needle of a broken car speedometer is free to swing, and bounces perfectly off the pins at either end, so that if you give it a flick it is equally likely to come to rest at any angle between 0 to π .

1+2+2+ 3+2=10

- **a.** What is the probability density, $\rho(\theta)$?
- **b.** Plot $\rho(\theta)$ as a function of θ , from $\frac{-\pi}{2}$ to $\frac{3\pi}{2}$.
- c. Compute (θ) , (θ^2) and (σ) for this distribution.

2. a.Draw the first three stationary states of the infinite square well (bounded between 0 to a). Identify the number of nodes in each 4+3+3

b. A particle in the infinite square well has the initial wave function

$$\Psi(x,0) = A\sin^2(\pi x/\alpha).$$

- (i) Normalize $\Psi(x,0)$. [No explicit integration is allowed]
- (ii) Find $\Psi(x,t)$.

4+6=10

- 3. The ladder operators are defined as $a_{\pm} \equiv \frac{1}{\sqrt{2\hbar m\omega}} (\mp ip + m\omega x)$. a. Find out the commutator between a_{-} and a_{+} , that is
 - b. Find the expectation value of the kinetic energy in the nth stationary state of the harmonic oscillator.
- 4. A free particle, which is initially localized in the range -a < x < a, 2+3+2+ is released at time t = 0:

3=10

$$\Psi(x,0) = \begin{cases} A & \text{if } -a < x < a \\ 0 & \text{otherwise.} \end{cases}$$

Where A and a are positive real constants.

- a. Normalize Ψ(x, 0).
- **b.** Find $\phi(k)$ using the relation $\phi(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x, 0) e^{-ikx} dx$.

- c. Construct $\Psi(x,t)$ following the relation $\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \phi(k) e^{-i\left(kx \frac{hk^2}{2m}t\right)} dk$. [Please note that you cannot solve it analytically. This could be done numerically. So just concentrate on the construction of the wave function.]
- **d.** Discuss the limiting cases for $\Psi(x,0)$ and $\phi(k)$ (a very large, and a very small).
- 5. From time dependent Schrödinger's wave equation, using a variable separable method, deduce the time independent Schrödinger's wave equation
- 6. a. What is Bohr's magnetron? Calculate the Bohr's magnetron for the ground state electron in H-atom (Given $\hbar = 1.05 \times 10^{-34}$ 3=10
 - b. Deduce the magnitudes of the orbital dipole magnetic moment $\vec{\mu}_i$ of the electron in H-atom in p- and d-states. (Assume the spin of electron is zero)
- 7. Deduce the Schrödinger's equation for a Hydrogen atom in 5+5=10 spherical polar coordinates and set the azimuthal wave equation applying separation of variables
- 8. a. State and explain Pauli's exclusion principle.
 b. Discuss the distribution of quantum numbers in K- and L-shells, following Pauli's exclusion principle.
