c. Does not exist

8. Consider the following statements:

M.Sc. MATHEMATICS FOURTH SEMESTER GENERAL MATHEMATICS-II MSM-406

Full Marks: 70 Duration: 3 hrs. [PART-A: Objective] Marks: 20 Time: 20 min. 1X20=20 Choose the correct answer from the following: 1. Which of the following is not a group? a. (R. ·) b. (Z, +) - d. None of these c. (R.+) 2. Which of the following is true? a. Identity element of a group is always b. Inverse element of a group is always unique. unique. c. Both (a) are (b) d. None of these 3. Which of the following is an Abelian Group a. The group of all 2×2 invertible b. The group {1,-1,t,-i} w.r.t multiplication. matrix w.r.t matrix multiplication. c. Both (a) and (b). d. None of these 4. Let G be a group and H be a subgroup of G. If order of H is 6, then order of G can be a. 2 b. 12 d. None of these. c. 15 5. Let $G = \{0.1, 2\}$. For $a, b \in G$, a binary operation '*' define on G as a * b = |a - b|. The (G,*) is b. an Abelian group a, a group d. none of these c. not a group The set of natural number N is a. bounded b. bounded below but not bounded above c. bounded above but not bounded below d. not bounded $\frac{1}{2}$, $-\frac{1}{3}$, ...} are respectively The infimum and supremum of the set {-1,a. I and 0 b. 0 and -1

P: The set R of real numbers is the neighbourhood of each of its points.

Q: The set Q of rational numbers is not the neighbourhood of each of its points. USTM/COE/R-01

d. None of these

a. Piri	rue, Q false	b. P false, Q true
c. Both	th P and Q are true.	d. Both P and Q are false.
9. Which o	of the following is/are not	open set?
	e set of real numbers, ℝ e null set Φ	b. The set of natural numbers, Nd. None of these
P: Every Q: Any a. P tru	ider the following statemen bry finite set of numbers is bo y interval in the real line ℝ i true, Q false th P and Q are true.	ts: punded.
*		e matrices. The identity element of $(G, +)$ is
a. 0		b. 1
	ro matrix	d. Unit matrix
	of the following is/are ope	
a. [1, α (5, (0, 1		b. (-α.0] d. [0.1]
		value of the function $f(x)$ at $x = 0$, so that the
a. 0	on is continuous at $x = 0$ is	bI
c. 1		d. None of these
	et of points where the function	on f given by $f(x) = 2x - 1 \sin x$ is differentiable
is	. v. points where the function	
a. R		$b_{-R} = \left\{\frac{1}{2}\right\}$
c. (0, a	,∞)	d. None of these
15. The fur	unction $f(x) = \cot x$ is disco	ontinuous on the set
e a. {x :	$x = n\pi. \ n \in \mathbb{Z}$	b. $\{x = 2n\pi, n \in \mathbb{Z}\}$
c. {x :	$x = (2n+1)\frac{\pi}{2}, \ n \in \mathbb{Z}$	d. None of these
16. The fund	nction $f(x) = \frac{4-x^2}{4x-x^3}$ is	
a. Disc	scontinuous at only one poir	b. Discontinuous at exactly two points
	scontinuous at exactly three	points d. None of these
	$0 = \sqrt{25 - x^2}, \text{ then } \lim_{x \to 2} t$	
a. $\frac{1}{24}$		b. ½
c. −√2	\(\frac{724} \)	$d.\frac{1}{\sqrt{24}}$
		2 USTM/COE/R-01
		2 USTM/COE/R-01

Consider function
$$f(x) = \begin{cases} x, 0 \le x \le 1 \\ 2 - x, 1 < x \le 2 \end{cases}$$

a. f is continuous at x = 1c. f is continuous at x = 0

b. f is not continuous at x = 1

d. f is not continuous at x = 0

19. Consider the following statement:

P: Every continuous function is differentiable.

Q: Every differentiable function is continuous.

a. P true, Q false

b, Pfalse, Q true

c. Both P and Q are true

d. Both P and Q are false

20. Which of the following function is not differentiable?

$$a_{x}f(x) = |x|, \forall x \in \mathbb{R}$$

b. $f(x) = \sin x, \forall x \in \mathbb{R}$

$$\mathbf{g} f(x) = |x| . \forall x \in \mathbb{R}
\mathbf{c} f(x) = x^3 + 3 . \forall x \in \mathbb{R}$$

d. None of these

PART-B: Descriptive

Time: 2 HRS 40 MINS

Marks: 50

[Answer question no.(1) & any four (4) from the rest]

- 1. a. Show that the set $\{\pm 1...\pm i, \pm j, \pm k\}$, where $i^2 = j^2 = k^2 = -1$ and 4+6=10 ij = -ji = k, jk = -kj = i, ki = -ik = j is a group w.r.t multiplication. Is this an Abelian group?
 - b. Find the derivative if

(i)
$$y = \sec^{-1} \frac{\sqrt{x}+1}{\sqrt{x}-1} + \sin^{-1} \frac{\sqrt{x}-1}{\sqrt{x}+1}$$
 (ii) $\sin x = \frac{2t}{1+t^2} \cdot \cos y = \frac{1-t^2}{1+t^2}$ during $t = 1$

(ii)
$$\sin x = \frac{2t}{1+t^2} \cdot \cos y = \frac{1-t^2}{1+t^2}$$

2. Find infimum and supremum of the following sets. Which of the 2×5=10 them are bounded?

(i)
$$\left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$

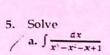
(ii)
$$\{-2, -\frac{3}{2}, -\frac{4}{3}, -\frac{5}{4}, \cdots, -\frac{n+1}{n}, \cdots\}$$

(iii)
$$\{x \in \mathbb{R} : 1 < x < 2\}$$

(v)
$$\{1 + (-1)^n : n \in \mathbb{N}\}$$

3. Find the derived set of the following sets:

$$\{x:0\leq x\leq 1\}$$


(ii)
$$\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$$

- (iii) Z, the set of integers
- (iv) Q, the set of rational numbers
- 4. Let *G* be an Abelian group. Prove or disprove that the following sets are subgroup of G:

3+3+2=10

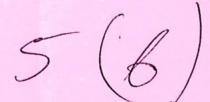
(i)
$$H = \{x^2 : x \in G\}$$

(ii)
$$H = \{x \in G : x^2 = e\}$$
, where e is the identity of G.

b.
$$\int \frac{(x-1)e^x}{(x+1)^x} dx$$

6. Find
$$\frac{dy}{dx}$$

(a)
$$\sqrt{\frac{(x-2)(x-3)}{(x-4)(x-5)(x-6)}}$$


(b)
$$\sin x^{\cos x} + \cos \sqrt{1-x^2}$$

$$f(x) = \begin{cases} 3, & 0 \le x \le 1 \\ 4, & 1 < x < 3 \\ 5, & 3 \le x \le 10 \end{cases}$$

8. Find the values of
$$a$$
 and b if the function $f(x)$ defined by

$$f(x) = \begin{cases} x^2 + 3x + a, & x \le 1 \\ bx + 2, & x > 1 \end{cases}$$
Is differentiable at $x = 1$.

