REV-01 BSP/10/15

B.Sc. PHYSICS FOURTH SEMESTER CLASSICAL MECHANICS **BSP-401**

Full Marks: 70

2024/05

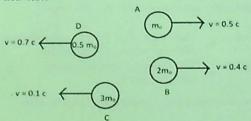
SET

[USE OMR FOR OBJECTIVE PART]

Duration: 3 hrs.

Time: 30 min.

the


Objective)

Marks: 20

Choose the correct answer from the following:

 $1 \times 20 = 20$

- 1. According to Einstein's Special Theory of Relativity, laws of physics can be formulated based on a. Inertial Frame of Reference b. Non-Inertial Frame of Reference
 - Both Inertial and Non-Inertial Frame
 - d. Quantum State of Reference
- 2. A frame of reference has four coordinates, x, y, z, and t is referred to as
 - a. Inertial frame of reference
- b. Non-inertial frame of reference
- c. Space-time reference frame
- d. Three-dimensional plane
- 3. According to Einstein's special theory of relativity, which of these objects should be the heaviest?

- c. C

- b. B
- d. D
- 4. In the case v << c, Lorentz transformation is the same as
- a. Einstein's transformation
- b. Galilean transformation
- c. Maxwell's transformation
- d. Planck's transformation
- 5. When a particle is moving with a velocity of light c relative to S, its velocity as observed by an observer in the frame S' is
 - a. Zero

b. 0.5 c

c. 0.75 c

- d. c
- in a central force field. 6. The angular momentum is _
 - a. Zero

b. Not conserved

c. Infinity

d. Conserved

7.	For circular orbit the value of eccentricity is a. $\epsilon > 1$ c. $\epsilon < 1$	$ \begin{array}{ll} \mathbf{b.} & \epsilon \geq 1 \\ \mathbf{d.} & \epsilon = 0 \end{array} $
8.	For elliptical orbit the values of energy E are a. $E = 0$ and $\epsilon > 1$ c. $E < 0$ and $\epsilon < 1$	and eccentricity ϵ are b. E > 0 and ϵ > 1 d. E > 0 and ϵ = 0
9.	The areal velocity of a particle in a central fa. Zero c. Infinity	orce field is b. Conserved d. Not conserved
10.	A particle is moving under central force aborderect statement: The motion of particle is always a. singular.	out a fixed center of force. Choose the b. Its angular momentum is conserved
	c. Its KE remain constant	d. Motion of the Particle is not in a plane
11.	The principle of virtual work states that in external forces on a system is equal to: The sum of kinetic and potential a. energy of the system. c. The potential energy of the system.	b. The kinetic energy of the system.d. Zero.
12.	In classical mechanics, generalized coordinates because: They are not affected by the choice of reference frame They allow for easier visualization of the system's motion.	 ates are preferred over cartesian b. They provide a better understanding of the system's configuration. d. They simplify mathematical calculations.
13.	If a generalized coordinate is angle, the coor	
. 14.	For a particle constrained to move on the cinumber of generalized coordinates are a. 1 c. 3	
15.	Under what condition, a coordinate q_j is saturated when its partial derivative with respect to time is zero. When the Lagrangian does not explicitly depend on it.	

2

USTM/COE/R-01

16.	For a system of 1	n degrees of freedom	, how many	Lagrange equations are there?
-----	-------------------	----------------------	------------	-------------------------------

b.
$$n-1$$

c.
$$n+1$$

a.
$$\frac{1}{2}mr^2\dot{\theta}^2$$

b.
$$\frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$$

c.
$$-\frac{1}{2}mgl\cos\theta$$

d.
$$\frac{1}{2}kx^2$$

- The Lagrangian must be dependent
- on linear momentum.
- The Lagrangian must be independent c. of angular coordinates.
- b. The Lagrangian must be dependent
 - on time.
- The Lagrangian must contain dissipative force.

a. force

b. energy

c. linear momentum

d. angular momentum

20. Fill in the blank:

In absence of a given component of applied _ the corresponding component of angular momentum is conserved.

a. Force

b. torque

c. acceleration

d. energy

Descriptive

Time: 2 hrs. 30 min.

[Answer question no.1 & any four (4) from the rest] 3+2+5 1. a. Show that the addition of any velocity to the velocity of light =10merely reproduces the velocity of light. b. Show that for velocity v<<c, Lorentz transformation reduces to Galilean transformations. c. Derive Lagrange's Equation from D'Alembert's principle for a conservative system. 5+5=10 2. a. Deduce Lorentz transformation equations for two inertial frames S and S'. b. Derive Hamilton's canonical equations of motion for a system of particles. 7+3=10 3. a. Derive the Einstein's mass-energy equivalence relation. b. If a rod travels with a speed 0.8c along its length (x-axis), calculate percentage contraction of its length. 7+3=10 4. a. Deduce the equation of motion and the first integral for a particle moving under a central force. **b.** Consider a circular orbit in a central potential $V(r) = k/r^n$, where k > 0 and 0 < n < 2. If the time period of circular orbit of radius R is T_1 and that or radius 2R is T_2 . Find T_2/T_1 . 10 5. State and prove Kepler's third law of planetary motion. 7+3=10 6. a. State and prove the conservation theorem for linear momentum for a system of N particles. b. The Lagrangian for a problem is $L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) - V(r).$ Identify the cyclic coordinate and the corresponding conservation law for the problem.

Marks: 50

7. **a.** Apply Lagrange's equation to find the equations of motion for a simple harmonic oscillator described by the Lagrangian $L = \frac{1}{2}m\dot{q}^2 - \frac{1}{2}kq^2$, where m is the mass and k is the spring constant.

5+3+2 =10

- **b.** The Lagrangian of a particle of mass m moving in a plane is given by $L = \frac{1}{2}m(v_x^2 + v_y^2) + a(xv_y yv_x)$, where v_x and v_y are velocity components and a is a constant. Find the expressions for canonical momenta.
- c. Explain the principle of virtual work.
- 8. a. Define Hamiltonian *H*. Give its physical significance.

2+4+4 =10

- **b.** Deduce the Hamiltonian function and Hamilton's equations for the following systems:
 - (i) Simple pendulum.
 - (ii) Motion of a particle in a central force field.

== *** = =